Searching geometry-aware pants decomposition in different isotopy classes

We propose an optimization framework to compute the desirable pants decomposition of surfaces. A pants decomposition partitions a surface into a set of genus-0 sub-patches with 3 boundaries. Any surface with non-trivial topology admits infinitely many pants decompositions that are isotopically inequivalent. We traverse different classes of pants decompositions to search for the optimal one with the pre-determined geometric criterion. Our proposed framework is general, and can be used to construct different suitable segmentations according to different applications. We also generalize this algorithm for consistent decomposition of multiple surfaces, which can be used to construct compatible cross-surface parameterization.

[1]  Hong Qin,et al.  Geometry-aware domain decomposition for T-spline-based manifold modeling , 2009, Comput. Graph..

[2]  Hong Qin,et al.  Surface matching using consistent pants decomposition , 2008, SPM '08.

[3]  Hong Qin,et al.  Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology , 2008, IEEE Transactions on Visualization and Computer Graphics.

[4]  Hong Qin,et al.  Surface Mesh to Volumetric Spline Conversion with Generalized Polycubes , 2013, IEEE Transactions on Visualization and Computer Graphics.

[5]  Tamal K. Dey,et al.  On Computing Handle and Tunnel Loops , 2007, 2007 International Conference on Cyberworlds (CW'07).

[6]  Kang Zhang,et al.  A topology-preserving optimization algorithm for polycube mapping , 2011, Comput. Graph..

[7]  Kang Zhang,et al.  Optimizing Geometry-aware Pants Decomposition , 2012, PG.

[8]  David Cohen-Steiner,et al.  Computing geometry-aware handle and tunnel loops in 3D models , 2008, ACM Trans. Graph..

[9]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[10]  Thomas A. Funkhouser,et al.  Consistent segmentation of 3D models , 2009, Comput. Graph..

[11]  Charlie C. L. Wang,et al.  Computing Length-Preserved Free Boundary for Quasi-Developable Mesh Segmentation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[12]  Charlie C. L. Wang,et al.  Efficient Optimization of Common Base Domains for Cross Parameterization , 2012, IEEE Transactions on Visualization and Computer Graphics.

[13]  W. Yu,et al.  Computing 3D Shape Guarding and Star Decomposition , 2011, Comput. Graph. Forum.

[14]  Hong Qin,et al.  Surface Mapping Using Consistent Pants Decomposition , 2009, IEEE Transactions on Visualization and Computer Graphics.

[15]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[16]  Hans-Peter Seidel,et al.  Mesh scissoring with minima rule and part salience , 2005, Comput. Aided Geom. Des..

[17]  Francis Lazarus,et al.  Optimal Pants Decompositions and Shortest Homotopic Cycles on an Orientable Surface , 2003, Graph Drawing.

[18]  Daniel Cohen-Or,et al.  Part Analogies in Sets of Objects , 2008, 3DOR@Eurographics.

[19]  Giuseppe Patanè,et al.  Para‐Graph: Graph‐Based Parameterization of Triangle Meshes with Arbitrary Genus , 2004, Comput. Graph. Forum.

[20]  Hong Qin,et al.  Restricted Trivariate Polycube Splines for Volumetric Data Modeling , 2012, IEEE Transactions on Visualization and Computer Graphics.