Robust Regression using Probability Plots for Estimating the Weibull Shape Parameter
暂无分享,去创建一个
Min Xie | L.-F. Zhang | L.-C. Tang | M. Xie | L.-F. Zhang | L. Tang
[1] Bradford F. Kimball,et al. On the Choice of Plotting Positions on Probability Paper , 1960 .
[2] P. Holland,et al. Robust regression using iteratively reweighted least-squares , 1977 .
[3] Robert B. Abernethy,et al. The new Weibull handbook , 1993 .
[4] R. Ross,et al. Formulas to describe the bias and standard deviation of the ML-estimated Weibull shape parameter , 1994 .
[5] R. Ross,et al. Bias and standard deviation due to Weibull parameter estimation for small data sets , 1996 .
[6] Thomas P. Ryan,et al. Modern Regression Methods , 1996 .
[7] J. B. Keats,et al. Comparison of robust and least-squares regression in computer-generated probability plots , 1997 .
[8] Robert J. Ross. Comparing linear regression and maximum likelihood methods to estimate Weibull distributions on limited data sets: systematic and random errors , 1999, 1999 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Cat. No.99CH36319).
[9] O. Gaudoin,et al. More on the Mis-Specification of the Shape Parameter with Weibull-to-Exponential Transformation , 2000 .
[10] Wen-Liang Hung. Weighted least-squares estimation of the shape parameter of the Weibull distribution , 2001 .
[11] Ernest Y. Wu,et al. On the Weibull shape factor of intrinsic breakdown of dielectric films and its accurate experimental determination. Part I: theory, methodology, experimental techniques , 2002 .
[12] Min Xie,et al. Efficient estimation of the weibull shape parameter based on a modified profile likelihood , 2003 .
[13] Randall E. Schumacker,et al. A Comparison of Five Robust Regression Methods With Ordinary Least Squares Regression: Relative Efficiency, Bias, and Test of the Null Hypothesis , 2003 .
[14] William J. Zimmer,et al. Comparison of estimation methods for weibull parameters: Complete and censored samples , 2003 .
[15] Wendai Wang,et al. Refined Rank Regression Method with Censors , 2004 .
[16] Jong-Wuu Wu,et al. A Note on Weighted Least‐squares Estimation of the Shape Parameter of the Weibull Distribution , 2004 .