Geoscientific Model Development The Met Office Unified Model Global Atmosphere 3 . 0 / 3 . 1 and JULES Global Land 3 . 0 / 3 . 1 configurations

We describe Global Atmosphere 3.0 (GA3.0): a configuration of the Met Office Unified Model (MetUM) developed for use across climate research and weather prediction activities. GA3.0 has been formulated by converging the development paths of the Met Office’s weather and climate global atmospheric model components such that wherever possible, atmospheric processes are modelled or parametrized seamlessly across spatial resolutions and timescales. This unified development process will provide the Met Office and its collaborators with regular releases of a configuration that has been evaluated, and can hence be applied, over a variety of modelling r égimes. We also describe Global Land 3.0 (GL3.0): a configuration of the JULES community land surface model developed for use with GA3.0. This paper provides a comprehensive technical and scientific description of the GA3.0 and GL3.0 (and related GA3.1 and GL3.1) configurations and presents the results of some initial evaluations of their performance in various applications. It is to be the first in a series of papers describing each subsequent Global Atmosphere release; this will provide a single source of reference for established users and developers as well as researchers requiring access to a current, but trusted, global MetUM setup.

[1]  Nigel Roberts,et al.  Radiative transfer over resolved topographic features for high‐resolution weather prediction , 2012 .

[2]  C. Donlon,et al.  The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system , 2012 .

[3]  Sean Milton,et al.  Adaptive detrainment in a convective parametrization , 2011 .

[4]  C. Jones,et al.  The HadGEM2 family of Met Office Unified Model climate configurations , 2011 .

[5]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics , 2011 .

[6]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes , 2011 .

[7]  Alberto Arribas,et al.  The GloSea4 Ensemble Prediction System for Seasonal Forecasting , 2011 .

[8]  Florian Pappenberger,et al.  A revised land hydrology in the ECMWF model: a step towards daily water flux prediction in a fully‐closed water cycle , 2011 .

[9]  Chris Harris,et al.  Improved Atlantic blocking in a climate model , 2011 .

[10]  James Manners,et al.  Reducing noise associated with the Monte Carlo Independent Column Approximation for weather forecasting models , 2011 .

[11]  Thomas Reichler,et al.  Analysis and Reduction of Systematic Errors through a Seamless Approach to Modeling Weather and Climate , 2010 .

[12]  Chris Harris,et al.  Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system , 2010 .

[13]  C. Morcrette,et al.  Analysis of prognostic cloud scheme increments in a climate model , 2010 .

[14]  S. Abel,et al.  Evaluation of stratocumulus cloud prediction in the Met Office forecast model during VOCALS-REx , 2010 .

[15]  J. Heming The impact of resolution on Met Office model predictions of tropical cyclone track and intensity , 2010 .

[16]  Veronika Eyring,et al.  A Summary of the CMIP5 Experiment Design , 2010 .

[17]  Paul Berrisford,et al.  The ERA-Interim Archive , 2009 .

[18]  Simon Wilson,et al.  U.K. HiGEM: The New U.K. High-Resolution Global Environment Model― Model Description and Basic Evaluation , 2009 .

[19]  N. Batjes,et al.  The Harmonized World Soil Database , 2009 .

[20]  Anne Verhoef,et al.  New soil physical properties implemented in the Unified Model at PS18 , 2009 .

[21]  Jean-Claude Thelen,et al.  Two fast radiative transfer methods to improve the temporal sampling of clouds in numerical weather prediction and climate models , 2009 .

[22]  Jim Haywood,et al.  Modeled and observed atmospheric radiation balance during the West African dry season: Role of mineral dust, biomass burning aerosol, and surface albedo , 2008 .

[23]  J. Haigh,et al.  Influence of the prescribed solar spectrum on calculations of atmospheric temperature , 2008 .

[24]  Cyril J. Morcrette,et al.  PC2: A prognostic cloud fraction and condensation scheme. II: Climate model simulations , 2008 .

[25]  Cyril J. Morcrette,et al.  PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description , 2008 .

[26]  Nigel Roberts,et al.  Characteristics of high-resolution versions of the Met Office unified model for forecasting convection over the United Kingdom , 2008 .

[27]  D. N. Walters,et al.  Upgrades to the Boundary-Layer Scheme in the Met Office Numerical Weather Prediction Model , 2008 .

[28]  Neill E. Bowler,et al.  The MOGREPS short‐range ensemble prediction system , 2008 .

[29]  Shoshiro Minobe,et al.  Influence of the Gulf Stream on the troposphere , 2008, Nature.

[30]  U. Lohmann,et al.  Introduction of prognostic rain in ECHAM5: design and single column model simulations , 2007 .

[31]  Stephen Cusack,et al.  Improved Surface Temperature Prediction for the Coming Decade from a Global Climate Model , 2007, Science.

[32]  Nigel Wood,et al.  A monotonically‐damping second‐order‐accurate unconditionally‐stable numerical scheme for diffusion , 2007 .

[33]  B. Shipway,et al.  A comparison of cloud‐resolving model simulations of trade wind cumulus with aircraft observations taken during RICO , 2007 .

[34]  A. Brown,et al.  The role of surface heterogeneity in modelling the stable boundary layer , 2007 .

[35]  John H. C. Gash,et al.  Improving the representation of radiation interception and photosynthesis for climate model applications , 2007 .

[36]  A. Lorenc,et al.  The Met Office global four‐dimensional variational data assimilation scheme , 2007 .

[37]  Stephan Havemann,et al.  A new parametrization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM , 2007 .

[38]  R. Allan,et al.  A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850-2004 , 2006 .

[39]  R. Betts,et al.  The impact of climate change on global river flow in HadGEM1 simulations , 2006 .

[40]  P. Jones,et al.  Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850 , 2006 .

[41]  G. Martin,et al.  The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part I: Model Description and Global Climatology , 2006 .

[42]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[43]  A. Staniforth,et al.  A new dynamical core for the Met Office's global and regional modelling of the atmosphere , 2005 .

[44]  H. Wells,et al.  The effect of rotation on the pressure drag force produced by flow around long mountain ridges , 2005 .

[45]  Nicolas Clerbaux,et al.  Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003 , 2005 .

[46]  M. Best,et al.  Representing urban areas within operational numerical weather prediction models , 2005 .

[47]  A. Brown,et al.  Orographic flow‐blocking scheme characteristics , 2004 .

[48]  Peter M. Cox,et al.  Climate feedback from wetland methane emissions , 2004 .

[49]  D. Randall,et al.  Stochastic generation of subgrid‐scale cloudy columns for large‐scale models , 2004 .

[50]  Peter M. Cox,et al.  The Sensitivity of Global Climate Model Simulations to the Representation of Soil Moisture Heterogeneity , 2003 .

[51]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[52]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 , 2003 .

[53]  Richard Essery,et al.  Explicit representation of subgrid heterogeneity in a GCM land surface scheme , 2003 .

[54]  Damian R. Wilson,et al.  A description of cloud production by non‐uniformly distributed processes , 2003 .

[55]  Stuart Webster,et al.  Improvements to the representation of orography in the Met Office Unified Model , 2003 .

[56]  Rob Lamb,et al.  Regional climate‐model predictions of extreme rainfall for a changing climate , 2003 .

[57]  J. Morcrette,et al.  A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields , 2003 .

[58]  Nigel Wood,et al.  A Simple Comparison of Four Physics–Dynamics Coupling Schemes , 2002 .

[59]  Richard Swinbank,et al.  Impact of a Spectral Gravity Wave Parameterization on the Stratosphere in the Met Office Unified Model , 2002 .

[60]  Andrew S. Jones,et al.  Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle , 2001 .

[61]  M. McIntyre,et al.  An Ultrasimple Spectral Parameterization for Nonorographic Gravity Waves , 2001 .

[62]  A. Lock The Numerical Representation of Entrainment in Parameterizations of Boundary Layer Turbulent Mixing , 2001 .

[63]  A. Grant,et al.  Cloud‐base fluxes in the cumulus‐capped boundary layer , 2001 .

[64]  Peter M. Cox,et al.  Description of the "TRIFFID" Dynamic Global Vegetation Model , 2001 .

[65]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[66]  Robin J. Hogan,et al.  Deriving cloud overlap statistics from radar , 2000 .

[67]  G. Martin,et al.  A New Boundary Layer Mixing Scheme. Part I: Scheme Description and Single-Column Model Tests , 2000 .

[68]  Judith Lean,et al.  Evolution of the Sun's Spectral Irradiance Since the Maunder Minimum , 2000 .

[69]  Jean-François Mahfouf,et al.  The representation of soil moisture freezing and its impact on the stable boundary layer , 1999 .

[70]  A. Brown,et al.  A similarity hypothesis for shallow‐cumulus transports , 1999 .

[71]  Damian R. Wilson,et al.  A microphysically based precipitation scheme for the UK meteorological office unified model , 1999 .

[72]  R. Betts,et al.  The impact of new land surface physics on the GCM simulation of climate and climate sensitivity , 1999 .

[73]  J. Crowther,et al.  Investigating k distribution methods for parameterizing gaseous absorption in the Hadley Centre Climate Model , 1999 .

[74]  S. A. Clough,et al.  Recent Developments in the Water Vapor Continuum , 1999 .

[75]  Martin Wild,et al.  The radiative impact of a simple aerosol climatology on the Hadley Centre atmospheric GCM , 1998 .

[76]  Roy W. Spencer,et al.  SSM/I Rain Retrievals within a Unified All-Weather Ocean Algorithm , 1998 .

[77]  T. Oki,et al.  Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network , 1998 .

[78]  G. J. Shutts,et al.  A new gravity‐wave‐drag scheme incorporating anisotropic orography and low‐level wave breaking: Impact upon the climate of the UK Meteorological Office Unified Model , 1998 .

[79]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[80]  D. Gregory,et al.  Parametrization of momentum transport by convection. II: Tests in single‐column and general circulation models , 1997 .

[81]  J. M. Edwards Efficient Calculation of Infrared Fluxes and Cooling Rates Using the Two-Stream Equations , 1996 .

[82]  B. Barkstrom,et al.  Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment , 1996 .

[83]  A. Slingo,et al.  Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model , 1996 .

[84]  D. Jenkinson,et al.  RothC-26.3 - A Model for the turnover of carbon in soil , 1996 .

[85]  Zhanqing Li,et al.  Improved Simulation of Clear-Sky Shortwave Radiative Transfer in the CCC-GCM , 1995 .

[86]  D. L. Roberts,et al.  A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols , 1994, Nature.

[87]  M. J. P. Cullen,et al.  The unified forecast/climate model , 1993 .

[88]  J. S. Godfrey,et al.  On the turbulent fluxes of buoyancy, heat and moisture at the air-sea interface at low wind speeds , 1991 .

[89]  Albert A. M. Holtslag,et al.  Flux Parameterization over Land Surfaces for Atmospheric Models , 1991 .

[90]  J. Lynch,et al.  The turnover of organic carbon and nitrogen in soil. , 1990 .

[91]  P. Rowntree,et al.  A Mass Flux Convection Scheme with Representation of Cloud Ensemble Characteristics and Stability-Dependent Closure , 1990 .

[92]  D. Legates,et al.  Mean seasonal and spatial variability in global surface air temperature , 1990 .

[93]  R. Smith A scheme for predicting layer clouds and their water content in a general circulation model , 1990 .

[94]  F. X. Kneizys,et al.  Line shape and the water vapor continuum , 1989 .

[95]  D. S. Zrnic,et al.  Differential propagation phase shift and rainfall rate estimation , 1986 .

[96]  S. Nicholls The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model , 1984 .

[97]  William R. Cotton,et al.  A Numerical Investigation of Several Factors Contributing to the Observed Variable Intensity of Deep Convection over South Florida , 1980 .

[98]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[99]  J. Fritsch,et al.  Numerical Prediction of Convectively Driven Mesoscale Pressure Systems. Part I: Convective Parameterization , 1980 .

[100]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[101]  G. Hornberger,et al.  Empirical equations for some soil hydraulic properties , 1978 .

[102]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[103]  K. Beard Terminal Velocity and Shape of Cloud and Precipitation Drops Aloft , 1976 .

[104]  B. Hicks,et al.  Flux‐gradient relationships in the constant flux layer , 1970 .

[105]  N. Phillips,et al.  NUMERICAL INTEGRATION OF THE QUASI-GEOSTROPHIC EQUATIONS FOR BAROTROPIC AND SIMPLE BAROCLINIC FLOWS , 1953 .

[106]  A. Gemant The Thermal Conductivity of Soils , 1950 .

[107]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .