Improvements in planar feature reconstructions in atom probe tomography

Standard atom probe tomography spatial reconstruction techniques have been reasonably successful in reproducing single crystal datasets. However, artefacts persist in the reconstructions that can be attributed to the incorrect assumption of a spherical evaporation surface. Using simulated and experimental field evaporation, we examine the expected shape of the evaporating surface and propose the use of a variable point projection position to mitigate to some degree these reconstruction artefacts. We show initial results from an implementation of a variable projection position, illustrating the effect on simulated and experimental data, while still maintaining a spherical projection surface. Specimen shapes during evaporation of model structures with interfaces between regions of low‐ and high‐evaporation‐field material are presented. Use of two‐and three‐dimensional projection‐point maps in the reconstruction of more complicated datasets is discussed.

[1]  Baptiste Gault,et al.  Advances in the calibration of atom probe tomographic reconstruction , 2009 .

[2]  D. Blavette,et al.  Laser-assisted atom probe tomography and nanosciences , 2008 .

[3]  T. J. Wilkes,et al.  On the quantitative analysis of field-ion micrographs , 1974 .

[4]  J. Schneir,et al.  Spatial Distribution Maps for Atom Probe Tomography , 2006, 2006 19th International Vacuum Nanoelectronics Conference.

[5]  H. Eaton,et al.  The electric field distribution in the field ion microscope as a function of specimen shank , 1980 .

[6]  A. Petford-Long,et al.  Information storage materials: nanoscale characterisation by three-dimensional atom probe analysis , 2004 .

[7]  P. Flaitz,et al.  Atom-Probe Tomography of Semiconductor Materials and Device Structures , 2009 .

[8]  Michael K Miller,et al.  Atom Probe Field Ion Microscopy , 1996 .

[9]  M. Drechsler,et al.  Zur Analyse von Feldionenmikroskop-Aufnahmen mit atomarer Auflösung , 1960 .

[10]  A. Nishida,et al.  Dopant distributions in n-MOSFET structure observed by atom probe tomography. , 2009, Ultramicroscopy.

[11]  A. Bostel,et al.  A general protocol for the reconstruction of 3D atom probe data , 1995 .

[12]  Vurpillot,et al.  The spatial resolution of 3D atom probe in the investigation of single-phase materials , 2000, Ultramicroscopy.

[13]  D. Blavette,et al.  A new approach to the interpretation of atom probe field-ion microscopy images. , 2001, Ultramicroscopy.

[14]  D. Blavette,et al.  An atom probe for three-dimensional tomography , 1993, Nature.

[15]  David N. Seidman,et al.  Three-Dimensional Atom-Probe Tomography: Advances and Applications , 2007 .

[16]  D. Larson,et al.  Atom-Probe Tomographic Studies of Thin Films and Multilayers , 2009 .

[17]  D. Larson,et al.  Improvement of multilayer analyses with a three‐dimensional atom probe , 2004 .

[18]  D. Larson,et al.  A System for Simulation of Tip Evolution Under Field Evaporation , 2009, Microscopy and Microanalysis.

[19]  E A Marquis,et al.  Evolution of tip shape during field evaporation of complex multilayer structures , 2011, Journal of microscopy.

[20]  H. Nordén,et al.  OBSERVATIONS OF THE FIELD-EVAPORATION END FORM OF TUNGSTEN. , 1969 .

[21]  D. Blavette,et al.  An improved reconstruction procedure for the correction of local magnification effects in three‐dimensional atom‐probe , 2007, 0907.5067.

[22]  S. Brenner,et al.  Construction and performance of an FIM-Atom Probe , 1970 .

[23]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[24]  R. Gomer,et al.  Field Emission and Field Ionization , 1961 .

[25]  Brian P. Gorman,et al.  Atom Probe Tomography of Electronic Materials , 2007 .

[26]  David J. Larson,et al.  Local Electrode Atom Probes , 1998, Microscopy and Microanalysis.

[27]  S. Duguay,et al.  Modeling artifacts in the analysis of test semiconductor structures in atom probe tomography , 2009 .

[28]  R. Newman,et al.  A method for indexing field ion micrographs , 1967 .

[29]  Michael K Miller,et al.  Atom Probe Tomography: Analysis at the Atomic Level , 2012 .

[30]  D. Brandon The accurate determination of crystal orientation from field ion micrographs , 1964 .

[31]  B. P. Geiser,et al.  Wide-Field-of-View Atom Probe Reconstruction , 2009, Microscopy and Microanalysis.

[32]  A. Cerezo,et al.  Some aspects of image projection in the field-ion microscope , 1999 .

[33]  Fons Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[34]  K. F. Russell,et al.  Effect of Specimen Aspect Ratio on the Reconstruction of Atom Probe Tomography Data , 1999, Microscopy and Microanalysis.

[35]  F Vurpillot,et al.  Modeling Image Distortions in 3DAP , 2004, Microscopy and Microanalysis.

[36]  H. V. Eekelen The behaviour of the field-ion microscope: A gas dynamical calculation , 1970 .

[37]  Baptiste Gault,et al.  Estimation of the Reconstruction Parameters for Atom Probe Tomography , 2008, Microscopy and Microanalysis.

[38]  G. Gipson An improved empirical formula for the electric field near the surface of field emitters , 1980 .

[39]  J. Panitz,et al.  A Renaissance in Atom-Probe Tomography , 2009 .

[40]  Alan H. Karp,et al.  A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides , 1990, TOMS.

[41]  Michael K Miller,et al.  Invited review article: Atom probe tomography. , 2007, The Review of scientific instruments.

[42]  E. Boyes,et al.  Investigations of field evaporation with a field-desorption microscope , 1976 .

[43]  G. Smith,et al.  Structural Materials: Understanding Atomic-Scale Microstructures , 2009 .

[44]  Vurpillot,et al.  The shape of field emitters and the ion trajectories in three‐dimensional atom probes , 1999, Journal of microscopy.

[45]  Michael K Miller,et al.  Local magnification effects in the atom probe , 1990 .