Geology and colour of Kupalo crater on Ceres

[1]  V. Lapshin,et al.  The effect of impact velocity on rebound height after impact interaction , 2020, IOP Conference Series: Materials Science and Engineering.

[2]  Deutsche Forschungsanstalt für Luft und Raumfahrt,et al.  The surface of (1) Ceres in visible light as seen by Dawn/VIR , 2020, 2010.03453.

[3]  C. Russell,et al.  Impact heat driven volatile redistribution at Occator crater on Ceres as a comparative planetary process , 2020, Nature Communications.

[4]  C. Russell,et al.  The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion , 2020, Nature Communications.

[5]  B. Gądek,et al.  Processes controlling the development of talus slopes in SW Spitsbergen: The role of deglaciation and periglacial conditions , 2020, Land Degradation & Development.

[6]  E. Cloutis,et al.  Recent cryovolcanic activity at Occator crater on Ceres , 2020, Nature Astronomy.

[7]  M. Hesse,et al.  Impact-driven mobilization of deep crustal brines on dwarf planet Ceres , 2019, Nature Astronomy.

[8]  A. Nathues,et al.  Landslides on Ceres: Diversity and Geologic Context , 2019, Journal of geophysical research. Planets.

[9]  R. Kenner Mass wasting processes affecting the surface of an alpine talus slope: Annual sediment budgets 2009–2018 at Flüelapass, eastern Swiss Alps. , 2019, Land Degradation & Development.

[10]  C. Russell,et al.  Fluidized Appearing Ejecta on Ceres: Implications for the Mechanical Properties, Frictional Properties, and Composition of its Shallow Subsurface , 2019, Journal of Geophysical Research: Planets.

[11]  Brandon C. Johnson,et al.  Post-impact thermal structure and cooling timescales of Occator crater on asteroid 1 Ceres , 2019, Icarus.

[12]  J. E. Riedel,et al.  High-resolution shape model of Ceres from stereophotoclinometry using Dawn Imaging Data , 2019, Icarus.

[13]  G. Collins,et al.  Formation of Complex Craters in Layered Targets With Material Anisotropy , 2019, Journal of Geophysical Research: Planets.

[14]  F. G. Carrozzo,et al.  Spectral analysis of the Cerean geological unit crater central peak material as an indicator of subsurface mineral composition , 2019, Icarus.

[15]  T. McCord,et al.  Ceres’s internal evolution: The view after Dawn , 2018, Meteoritics & Planetary Science.

[16]  F. G. Carrozzo,et al.  Nature, formation, and distribution of carbonates on Ceres , 2018, Science Advances.

[17]  E. Cloutis,et al.  Spectral properties and geology of bright and dark material on dwarf planet Ceres , 2017, 1712.05203.

[18]  L. McFadden,et al.  Stability of hydrated carbonates on Ceres , 2017, Icarus.

[19]  Katherine E. Johnson,et al.  Exposed H2O-rich areas detected on Ceres with the dawn visible and infrared mapping spectrometer , 2017, Icarus.

[20]  F. G. Carrozzo,et al.  Ceres’ impact craters – Relationships between surface composition and geology , 2017, Icarus.

[21]  R. Jaumann,et al.  The formation and evolution of bright spots on Ceres , 2017, Icarus.

[22]  C. Russell,et al.  The interior structure of Ceres as revealed by surface topography , 2017 .

[23]  R. Jaumann,et al.  The unique geomorphology and structural geology of the Haulani crater of dwarf planet Ceres as revealed by geological mapping of equatorial quadrangle Ac-6 Haulani , 2017, Icarus.

[24]  E. Cloutis,et al.  Oxo Crater on (1) Ceres: Geological History and the Role of Water-ice , 2017 .

[25]  F. G. Carrozzo,et al.  Ac-H-11 Sintana and Ac-H-12 Toharu quadrangles: Assessing the large and small scale heterogeneities of Ceres’ surface , 2017, Icarus.

[26]  C. Russell,et al.  Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution , 2017, Geophysical research letters.

[27]  C. Russell,et al.  Geomorphological evidence for ground ice on dwarf planet Ceres , 2017 .

[28]  F. G. Carrozzo,et al.  An investigation of the bluish material on Ceres , 2017 .

[29]  F. G. Carrozzo,et al.  Artifacts reduction in VIR/Dawn data. , 2016, The Review of scientific instruments.

[30]  K. Matz,et al.  Timing of optical maturation of recently exposed material on Ceres , 2016 .

[31]  R. Jaumann,et al.  Cryogenic flow features on Ceres: Implications for crater‐related cryovolcanism , 2016 .

[32]  C. Russell,et al.  FC colour images of dwarf planet Ceres reveal a complicated geological history , 2016 .

[33]  A. Longobardo,et al.  Compositional differences among Bright Spots on the Ceres surface , 2016, Icarus.

[34]  Christopher T. Russell,et al.  High-resolution Ceres High Altitude Mapping Orbit atlas derived from Dawn Framing Camera images , 2016 .

[35]  C. Russell,et al.  The geomorphology of Ceres , 2016, Science.

[36]  C. Russell,et al.  Cratering on Ceres: Implications for its crust and evolution , 2016, Science.

[37]  C. Russell,et al.  A partially differentiated interior for (1) Ceres deduced from its gravity field and shape , 2016, Nature.

[38]  R. Mugnuolo,et al.  Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres , 2016, Nature.

[39]  C. Russell,et al.  Geological Mapping of the Ac-H-12 Toharu Quadrangle of Ceres from NASA Dawn Mission , 2016 .

[40]  C. Russell,et al.  Surface Processes and Space Weathering on Ceres , 2016 .

[41]  R. Jaumann,et al.  Dawn arrives at Ceres: Exploration of a small, volatile-rich world , 2016, Science.

[42]  R. Jaumann,et al.  Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres , 2015, Nature.

[43]  C. Russell,et al.  Sublimation in bright spots on (1) Ceres , 2015, Nature.

[44]  C. Russell,et al.  Exogenic olivine on Vesta from Dawn Framing Camera color data , 2015 .

[45]  J. Head,et al.  Lunar floor-fractured craters as magmatic intrusions: Geometry, modes of emplacement, associated tectonic and volcanic features, and implications for gravity anomalies , 2015 .

[46]  S. Leroueil,et al.  The Varnes classification of landslide types, an update , 2014, Landslides.

[47]  Debra L. Buczkowski,et al.  Introduction: The geologic mapping of Ceres , 2014, Icarus.

[48]  F. Scholten,et al.  Mass‐wasting features and processes in Vesta's south polar basin Rheasilvia , 2013 .

[49]  C. Pieters,et al.  Space weathering on airless bodies , 2016, Journal of geophysical research. Planets.

[50]  P. Mouginis-Mark,et al.  Origin of small pits in martian impact craters , 2012 .

[51]  A. McEwen,et al.  Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process , 2012 .

[52]  Andreas Nathues,et al.  Color and Albedo Heterogeneity of Vesta from Dawn , 2012, Science.

[53]  Robert O. Green,et al.  Thermal removal from near‐infrared imaging spectroscopy data of the Moon , 2011 .

[54]  T. Maue,et al.  The Dawn Framing Camera , 2011 .

[55]  David P. O'Brien,et al.  The global effects of impact-induced seismic activity on fractured asteroid surface morphology , 2005 .

[56]  E. Shock,et al.  Composition and stability of salts on the surface of Europa and their oceanic origin , 2001 .

[57]  A. Jahn Periglacial talus slopes. Geomorphological studies on spitsbergen and in Northern Scandinavia , 1984 .

[58]  E. Heggy,et al.  Exploring Ceres’s Unusual Regolith Porosity and Its Implications for Volatile Retention , 2021, The Planetary Science Journal.

[59]  M. Zolotov The composition and structure of Ceres' interior , 2020 .

[60]  R. Jaumann,et al.  Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains , 2019, Icarus.

[61]  J. Plescia Transitional Crater (Simple/Complex) , 2014 .

[62]  F. D. Blasio,et al.  Introduction to the Physics of Landslides , 2011 .

[63]  D. Varnes SLOPE MOVEMENT TYPES AND PROCESSES , 1978 .