Overview of bioluminescence tomography--a new molecular imaging modality.

According to the NIH roadmap, optical molecular imaging has an instrumental role in the development of molecular medicine. Great efforts, including those with bioluminescent imaging techniques, have been made to understand the linkage between genes and phenotypic expressions in normal and disease biology. Currently, bioluminescent techniques are widely used in small animal studies. However, most of the current bioluminescent imaging techniques are done in the 2D mode. In this overview, we review bioluminescence tomography (3D mode), elaborate on its principle and multi-spectral extension, describe associated image unmixing and normalization techniques, and discuss a number of directions for technical improvements and biomedical applications.

[1]  Raul Martinez-Zaguilan,et al.  Simultaneous analysis of multiple fluorescent probes in single cells by microspectroscopic imaging , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[2]  Jianhua Xuan,et al.  Modeling and Reconstruction of Mixed Functional and Molecular Patterns , 2006, Int. J. Biomed. Imaging.

[3]  S. Apisarnthanarax,et al.  Current Imaging Paradigms in Radiation Oncology , 2005, Radiation research.

[4]  Ralph Weissleder,et al.  Molecular imaging in the clinical arena. , 2005, JAMA.

[5]  Peter Choyke,et al.  Current Advances in Molecular Imaging: Noninvasive in Vivo Bioluminescent and Fluorescent Optical Imaging in Cancer Research , 2003, Molecular imaging.

[6]  Tamara L. Troy,et al.  Determination of depth of in vivo bioluminescent signals using spectral imaging techniques , 2003, SPIE BiOS.

[7]  B. Pogue,et al.  Spectrally resolved bioluminescence optical tomography. , 2006, Optics letters.

[8]  Charles A. Bouman,et al.  Clustered components analysis for functional MRI , 2004, IEEE Transactions on Medical Imaging.

[9]  Robert Clarke,et al.  Optimized multilayer perceptrons for molecular classification and diagnosis using genomic data , 2006, Bioinform..

[10]  P. Stanley A survey of more than 90 commercially available luminometers and imaging devices for low-light measurements of chemiluminescence and bioluminescence, including instruments for manual, automatic and specialized operation, for HPLC, LC, GLC and microtitre plates. Part 2: Photographs. , 1992, Journal of bioluminescence and chemiluminescence.

[11]  M. Jiang,et al.  Uniqueness theorems in bioluminescence tomography. , 2004, Medical physics.

[12]  Wenxiang Cong,et al.  Boundary integral method for bioluminescence tomography. , 2006, Journal of biomedical optics.

[13]  Vasilis Ntziachristos,et al.  Shedding light onto live molecular targets , 2003, Nature Medicine.

[14]  Geoffrey McLennan,et al.  Practical reconstruction method for bioluminescence tomography. , 2005, Optics express.

[15]  Shan Zhao,et al.  Temperature-modulated bioluminescence tomography. , 2006, Optics express.

[16]  Masafumi Oshiro,et al.  Visualizing Gene Expression in Living Mammals Using a Bioluminescent Reporter , 1997, Photochemistry and photobiology.

[17]  A. Sinusas,et al.  Molecular imaging. A new approach to nuclear cardiology. , 2005, The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of....

[18]  M. Schweiger,et al.  Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography. , 2003, Optics letters.

[19]  John F. Mustard,et al.  Spectral unmixing , 2002, IEEE Signal Process. Mag..

[20]  C. Loan Generalizing the Singular Value Decomposition , 1976 .

[21]  Geoffrey McLennan,et al.  In vivo tomographic imaging based on bioluminescence , 2004, SPIE Optics + Photonics.

[22]  K. Kuroda,et al.  A precise and fast temperature mapping using water proton chemical shift , 1995, Magnetic resonance in medicine.

[23]  O. Minet,et al.  The Biomedical Use of Rescaling Procedures in Optical Biopsy and Optical Molecular Imaging , 2002 .

[24]  M. Thakur,et al.  Report of a summit on molecular imaging. , 2006, AJR. American journal of roentgenology.

[25]  K. Allemann,et al.  Positronen-Emissions-Tomographie: Ein bildgebendes Verfahren auf molekularer Ebene , 2004 .

[26]  Hua-bei Jiang,et al.  Three-dimensional bioluminescence tomography with model-based reconstruction. , 2004, Optics express.

[27]  E. Hoffman,et al.  In vivo mouse studies with bioluminescence tomography. , 2006, Optics express.

[28]  M. Schweiger,et al.  A finite element approach for modeling photon transport in tissue. , 1993, Medical physics.

[29]  M. Wyss,et al.  [Positron emission tomography: diagnostic imaging on a molecular level]. , 2004, Schweizer Archiv fur Tierheilkunde.

[30]  C. Contag,et al.  Advances in in vivo bioluminescence imaging of gene expression. , 2002, Annual review of biomedical engineering.

[31]  Yue Wang,et al.  Independent component imaging of disease signatures , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[32]  Thomas L. Chenevert,et al.  Noninvasive real-time imaging of apoptosis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  E. Zerhouni The NIH Roadmap , 2003, Science.

[34]  B. Rice,et al.  In vivo imaging of light-emitting probes. , 2001, Journal of biomedical optics.

[35]  Erkki Oja,et al.  Blind Separation of Positive Sources by Globally Convergent Gradient Search , 2004, Neural Computation.

[36]  Harvey R Herschman,et al.  Molecular Imaging: Looking at Problems, Seeing Solutions , 2003, Science.

[37]  Anton P. McCaffrey,et al.  Advancing Molecular Therapies through In Vivo Bioluminescent Imaging , 2003, Molecular imaging.

[38]  J. W. Hastings,et al.  A time-dependent bacterial bioluminescence emission spectrum in an in vitro single turnover system: energy transfer alone cannot account for the yellow emission of Vibrio fischeri Y-1. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Ge Wang,et al.  Mathematical Study and Numerical Simulation of Multispectral Bioluminescence Tomography , 2006, Int. J. Biomed. Imaging.

[40]  Sun-Yuan Kung,et al.  Probabilistic principal component subspaces: a hierarchical finite mixture model for data visualization , 2000, IEEE Trans. Neural Networks Learn. Syst..

[41]  Wenxiang Cong,et al.  A born-type approximation method for bioluminescence tomography. , 2006, Medical physics.

[42]  Haesun Park,et al.  Generalizing discriminant analysis using the generalized singular value decomposition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  C. Contag,et al.  It's not just about anatomy: In vivo bioluminescence imaging as an eyepiece into biology , 2002, Journal of magnetic resonance imaging : JMRI.

[44]  Bruno Quesson,et al.  Magnetic resonance temperature imaging for guidance of thermotherapy , 2000, Journal of magnetic resonance imaging : JMRI.

[45]  B. Cornelissen,et al.  A review of small animal imaging planar and pinhole spect Gamma camera imaging. , 2005, Veterinary radiology & ultrasound : the official journal of the American College of Veterinary Radiology and the International Veterinary Radiology Association.

[46]  Ge Wang,et al.  Multispectral Bioluminescence Tomography: Methodology and Simulation , 2006, Int. J. Biomed. Imaging.

[47]  O. Minet,et al.  The Medical Use of Rescaling Procedures in Optical Biopsy and Optical Molecular Imaging , 2004, Journal of Fluorescence.

[48]  R. Weissleder,et al.  Fluorescence molecular tomography resolves protease activity in vivo , 2002, Nature Medicine.

[49]  Ge Wang,et al.  Numerical study on the validity of the diffusion approximation for computational optical biopsy. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[50]  D. Piwnica-Worms,et al.  Monitoring proteasome activity in cellulo and in living animals by bioluminescent imaging: technical considerations for design and use of genetically encoded reporters. , 2005, Methods in enzymology.

[51]  Ming Jiang,et al.  Image reconstruction for bioluminescence tomography , 2004, SPIE Optics + Photonics.

[52]  J. Poorter,et al.  Noninvasive MRI Thermometry with the Proton Resonance Frequency (PRF) Method: In Vivo Results in Human Muscle , 1995, Magnetic resonance in medicine.

[53]  P. Stanley Commercially available luminometers and imaging devices for low-light measurements and kits and reagents utilizing bioluminescence or chemiluminescence: survey update I. , 1993, Journal of bioluminescence and chemiluminescence.

[54]  R. Leahy,et al.  Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging , 2005, Physics in medicine and biology.

[55]  R. Gast,et al.  Isolation of the in vivo emitter in bacterial bioluminescence. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Yi Liu,et al.  Tomography-based 3-D anisotropic elastography using boundary measurements , 2005, IEEE Transactions on Medical Imaging.

[57]  A. Chatziioannou,et al.  Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study , 2005, Physics in medicine and biology.

[58]  Ge Wang,et al.  A finite-element-based reconstruction method for 3D fluorescence tomography. , 2005, Optics express.

[59]  P. Stanley A survey of more than 90 commercially available luminometers and imaging devices for low-light measurements of chemiluminescence and bioluminescence, including instruments for manual, automatic and specialized operation, for HPLC, LC, GLC and microtitre plates. Part 1: Descriptions. , 1992, Journal of bioluminescence and chemiluminescence.

[60]  Jianhua Xuan,et al.  Computed simultaneous imaging of multiple functional biomarkers , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[61]  C. Contag,et al.  Viewing Disease Progression Through a Bioluminescent Window , 1996 .

[62]  C. Contag,et al.  Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. , 2005, Journal of biomedical optics.