Parsing silhouettes: The short-cut rule

Many researchers have proposed that, for the purpose of recognition, human vision parses shapes into component parts. Precisely how is not yet known. The minima rule for silhouettes (Hoffman & Richards, 1984) defines boundary points at which to parse but does not tell how to use these points to cut silhouettes and, therefore, does not tell what the parts are. In this paper, we propose the short-cut rule, which states that, other things being equal, human vision prefers to use the shortest possible cuts to parse silhouettes. We motivate this rule, and the well-known Petter’s rule for modal completion, by the principle of transversality. We present five psychophysical experiments that test the short-cut rule, show that it successfully predicts part cuts that connect boundary points given by the minima rule, and show that it can also create new boundary points.

[1]  Ernst Mach,et al.  The analysis of sensations and the relation of the physical to the psychical , 1914, The Mathematical Gazette.

[2]  Ernst Mach,et al.  The Analysis of Sensations. , 1916 .

[3]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[4]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[5]  Maurice G. Kendall The advanced theory of statistics , 1958 .

[6]  Lawrence G. Roberts,et al.  Machine Perception of Three-Dimensional Solids , 1963, Outstanding Dissertations in the Computer Sciences.

[7]  Patrick Henry Winston,et al.  Learning structural descriptions from examples , 1970 .

[8]  Colin Renfrew,et al.  Carbon 14 and the Prehistory of Europe , 1971 .

[9]  F. Attneave Multistability in perception. , 1971, Scientific American.

[10]  David L. Waltz,et al.  Generating Semantic Descriptions From Drawings of Scenes With Shadows , 1972 .

[11]  I. Biederman,et al.  Searching for objects in real-world scences. , 1973, Journal of experimental psychology.

[12]  D. Marr,et al.  Analysis of occluding contour , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[13]  S. Palmer Hierarchical structure in perceptual representation , 1977, Cognitive Psychology.

[14]  HARRY BLUM,et al.  Shape description using weighted symmetric axis features , 1978, Pattern Recognit..

[15]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  G. Kanizsa,et al.  Organization in Vision: Essays on Gestalt Perception , 1979 .

[17]  Rodney A. Brooks,et al.  Symbolic Reasoning Among 3-D Models and 2-D Images , 1981, Artif. Intell..

[18]  Thomas O. Binford,et al.  Inferring Surfaces from Images , 1981, Artif. Intell..

[19]  Donald D. Hoffman Representing shapes for visual recongnition , 1983 .

[20]  Donald D. Hoffman The Interpretation of Visual Illusions , 1983 .

[21]  A. Witkin,et al.  On the Role of Structure in Vision , 1983 .

[22]  S. Pinker,et al.  Visual cognition : An introduction * , 1989 .

[23]  B. Tversky,et al.  Journal of Experimental Psychology : General VOL . 113 , No . 2 JUNE 1984 Objects , Parts , and Categories , 2005 .

[24]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[25]  M. Brady,et al.  Smoothed Local Symmetries and Their Implementation , 1984 .

[26]  Anne Treisman,et al.  Preattentive processing in vision , 1985, Computer Vision Graphics and Image Processing.

[27]  Donald D. Hoffman,et al.  Codon constraints on closed 2D shapes , 1985, Comput. Vis. Graph. Image Process..

[28]  W Richards,et al.  Encoding contour shape by curvature extrema. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[29]  Alex Pentland,et al.  Perceptual Organization and the Representation of Natural Form , 1986, Artif. Intell..

[30]  Rakesh Mohan,et al.  Book review: PERCEPTUAL ORGANIZATION AND VISUAL RECOGNITION by David G. Lowe (Kluwer Academic Publishers) , 1987, SGAR.

[31]  Bruce M. Bennett,et al.  Description of solid shape and its inference from occluding contours , 1987 .

[32]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[33]  A. Brookes,et al.  The Concave Cusp as a Determiner of Figure—Ground , 1988, Perception.

[34]  Donald D. Hoffman,et al.  Parts of Visual Objects: An Experimental Test of the Minima Rule , 1989, Perception.

[35]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Irving Biederman,et al.  Higher-level vision , 1990 .

[37]  P. Kellman,et al.  A theory of visual interpolation in object perception , 1991, Cognitive Psychology.

[38]  A. Yuille Deformable Templates for Face Recognition , 1991, Journal of Cognitive Neuroscience.

[39]  I. Biederman,et al.  Priming contour-deleted images: Evidence for intermediate representations in visual object recognition , 1991, Cognitive Psychology.

[40]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[41]  Azriel Rosenfeld,et al.  From volumes to views: An approach to 3-D object recognition , 1992, CVGIP Image Underst..

[42]  M. Leyton Symmetry, Causality, Mind , 1999 .

[43]  Gérard G. Medioni,et al.  Hierarchical Decomposition and Axial Shape Description , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  T. Albright,et al.  Image Segmentation Cues in Motion Processing: Implications for Modularity in Vision , 1993, Journal of Cognitive Neuroscience.

[45]  M. Farah,et al.  Parts and Wholes in Face Recognition , 1993, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[46]  William T. Freeman,et al.  The generic viewpoint assumption in a framework for visual perception , 1994, Nature.

[47]  P. Schyns,et al.  The Ontogeny of Part Representation in Object Concepts , 1994 .

[48]  V. Bruce,et al.  Recognizing objects and faces , 1994 .

[49]  Jon Driver,et al.  Parallel computation of symmetry but not repetition within single visual shapes , 1994 .

[50]  P. Bressan,et al.  Solving Occlusion Indeterminacy in Chromatically Homogeneous Patterns , 1995, Perception.

[51]  Jon Driver,et al.  One-Sided Edge Assignment in Vision: 2. Part Decomposition, Shape Description, and Attention to Objects , 1995 .

[52]  Jon Driver,et al.  One-Sided Edge Assignment in Vision: 1. Figure-Ground Segmentation and Attention to Objects , 1995 .

[53]  Jon Driver,et al.  Obligatory edge-assignment in vision: The role of figure and part segmentation in symmetry detection. , 1995 .

[54]  Kaleem Siddiqi,et al.  Parts of Visual Form: Computational Aspects , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  J. Todd,et al.  Effects of changing viewing conditions on the perceived structure of smoothly curved surfaces. , 1996, Journal of experimental psychology. Human perception and performance.

[56]  Jon Sporring,et al.  The entropy of scale-space , 1996, ICPR.

[57]  K Siddiqi,et al.  Parts of Visual Form: Psychophysical Aspects , 1996, Perception.

[58]  M. Farah Is face recognition ‘special’? Evidence from neuropsychology , 1996, Behavioural Brain Research.

[59]  Donald D. Hoffman,et al.  Salience of visual parts , 1997, Cognition.

[60]  K. Herzog,et al.  What is visual intelligence , 1997 .

[61]  Donald D. Hoffman,et al.  Constructing and representing visual objects , 1997, Trends in Cognitive Sciences.

[62]  P. Schyns,et al.  Categorization creates functional features , 1997 .

[63]  J. Wolfe,et al.  Preattentive Object Files: Shapeless Bundles of Basic Features , 1997, Vision Research.

[64]  Robert L. Goldstone,et al.  The development of features in object concepts , 1998, Behavioral and Brain Sciences.

[65]  Donald D. Hoffman,et al.  Part Boundaries Alter the Perception of Transparency , 1998 .

[66]  Jun Saiki,et al.  Connectedness and the integration of parts with relations in shape perception. , 1998 .

[67]  Donald D. Hoffman Visual Intelligence: How We Create What We See , 1998 .

[68]  Barbara Landau,et al.  Parts of visual shape as primitives for categorization , 1998 .

[69]  D D Hoffman,et al.  Completing visual contours: The relationship between relatability and minimizing inflections , 1999, Perception & psychophysics.

[70]  J. Hulleman,et al.  Concavities as basic features in visual search: Evidence from search asymmetries , 2000, Perception & psychophysics.

[71]  Refractor Vision , 2000, The Lancet.