On Efficient Parallel Implementation of Moving Body Overset Grid Methods
暂无分享,去创建一个
An investigation into the parallel performance of moving-body overset grid methods will be presented. Parallel versions of the OVERFLOW flow solver, DCF3D domain connectivity software, and SIXDO six-degree-of-freedom routine are coupled with an automatic load balance routine and tested for 3D Navier-Stokes calculations on the IBM SP2. The primary source of parallel inefficiency in moving and problems are the domain connectivity costs with DCF 3D. Although this algorithm constitutes a relatively low fraction of the total solution cost (e.g. 10-20%) in calculations on serial machines, the consequently cause a significant degradation in the overall parallel performance. The paper will highlight some approaches for improving the scalability of DCF3D. The paper will present results of a proposed new load balancing scheme that seeks more equal distribution of the inter-grid boundary points in order to more evenly load balance the donor search costs associated with DCF3D. Some preliminary results will also be given from a new solution-adaption algorithm coupled with OVERFLOW which incorporates overset cartesian grids with various levels of refinement. The measured parallel performance from a descending delta-wing configuration and a generic store-separation from a wing/pylon case will be presented.