Quantitative photoacoustic imaging in the radiative transport regime

The objective of quantitative photoacoustic tomography (QPAT) is to reconstruct optical and thermodynamic properties of heterogeneous media from data of absorbed energy distribution inside the media. There have been extensive theoretical and computational studies on the inverse problem in QPAT, however, mostly in the diffusive regime. We present in this work some numerical reconstruction algorithms for multi-source QPAT in the radiative transport regime with energy data collected at either single or multiple wavelengths. We show that when the medium to be probed is non-scattering, explicit reconstruction schemes can be derived to reconstruct the absorption and the Gruneisen coefficients. When data at multiple wavelengths are utilized, we can reconstruct simultaneously the absorption, scattering and Gruneisen coefficients. We show by numerical simulations that the reconstructions are stable.

[1]  B T Cox,et al.  Photoacoustic tomography with a single detector in a reverberant cavity. , 2009, The Journal of the Acoustical Society of America.

[2]  Guillaume Bal,et al.  Reconstruction of Coefficients in Scalar Second‐Order Elliptic Equations from Knowledge of Their Solutions , 2011, 1111.5051.

[3]  Lihong V. Wang,et al.  Reconstructions in limited-view thermoacoustic tomography. , 2004, Medical physics.

[4]  Hongkai Zhao,et al.  Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization. , 2010, Optics express.

[5]  V. Ntziachristos,et al.  Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion. , 2007, Medical physics.

[6]  K. Friedrichs Advanced Ordinary Differential Equations , 1965 .

[7]  S. Osher,et al.  Quantitative Photoacoustic Tomography , 2012 .

[8]  Otmar Scherzer,et al.  Thermoacoustic computed tomography with large planar receivers , 2004 .

[9]  Ge Wang,et al.  Multispectral Bioluminescence Tomography: Methodology and Simulation , 2006, Int. J. Biomed. Imaging.

[10]  Lihong V. Wang,et al.  Photoacoustic imaging in biomedicine , 2006 .

[11]  B. T. Cox,et al.  The challenges for quantitative photoacoustic imaging , 2009, BiOS.

[12]  Yulia Hristova,et al.  Time reversal in thermoacoustic tomography—an error estimate , 2008, 0812.0606.

[13]  S. Arridge,et al.  Optical tomography: forward and inverse problems , 2009, 0907.2586.

[14]  Eric Todd Quinto,et al.  Injectivity Sets for the Radon Transform over Circles and Complete Systems of Radial Functions , 1996 .

[15]  Hongkai Zhao,et al.  Multilevel bioluminescence tomography based on radiative transfer equation part 2: total variation and l1 data fidelity. , 2010, Optics express.

[16]  Simon R Arridge,et al.  Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method. , 2006, Applied optics.

[17]  Markus Haltmeier,et al.  Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors , 2007 .

[18]  Vasilis Ntziachristos,et al.  Multispectral photoacoustic imaging of fluorochromes in small animals. , 2007, Optics letters.

[19]  S. Arridge,et al.  Estimating chromophore distributions from multiwavelength photoacoustic images. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  Roger J Zemp Quantitative photoacoustic tomography with multiple optical sources. , 2010, Applied optics.

[21]  M. Haltmeier,et al.  Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  S. Arridge,et al.  Quantitative spectroscopic photoacoustic imaging: a review. , 2012, Journal of biomedical optics.

[23]  G. Bal,et al.  Inverse scattering and acousto-optic imaging. , 2009, Physical review letters.

[24]  Lihong V Wang,et al.  Universal back-projection algorithm for photoacoustic computed tomography , 2005, SPIE BiOS.

[25]  O. Scherzer Handbook of mathematical methods in imaging , 2011 .

[26]  Guillaume Bal,et al.  Frequency Domain Optical Tomography Based on the Equation of Radiative Transfer , 2006, SIAM J. Sci. Comput..

[27]  Habib Ammari,et al.  An Introduction to Mathematics of Emerging Biomedical Imaging , 2008 .

[28]  L. Kunyansky,et al.  Explicit inversion formulae for the spherical mean Radon transform , 2006, math/0609341.

[29]  Dustin Steinhauer A Uniqueness Theorem for Thermoacoustic Tomography in the Case of Limited Boundary Data , 2009 .

[30]  Otmar Scherzer,et al.  Filtered backprojection for thermoacoustic computed tomography in spherical geometry , 2005, Mathematical Methods in the Applied Sciences.

[31]  Habib Ammari,et al.  Photoacoustic Imaging for Attenuating Acoustic Media , 2012 .

[32]  Debasish Roy,et al.  Quantitative photoacoustic tomography from boundary pressure measurements: noniterative recovery of optical absorption coefficient from the reconstructed absorbed energy map. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[33]  R. Zemp,et al.  Estimating optical absorption, scattering, and Grueneisen distributions with multiple-illumination photoacoustic tomography. , 2011, Applied optics.

[34]  Habib Ammari,et al.  Quantitative Photo-Acoustic Imaging of Small Absorbers , 2009 .

[35]  Josselin Garnier,et al.  Time reversal in attenuating acoustic media , 2010 .

[36]  Rakesh,et al.  Determining a Function from Its Mean Values Over a Family of Spheres , 2004, SIAM J. Math. Anal..

[37]  Lihong V. Wang,et al.  Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography. , 2011, Journal of biomedical optics.

[38]  Andreas H. Hielscher,et al.  PDE-constrained multispectral imaging of tissue chromophores with the equation of radiative transfer , 2010, Biomedical optics express.

[39]  Guillaume Bal,et al.  Algorithm for solving the equation of radiative transfer in the frequency domain. , 2004, Optics letters.

[40]  Guillaume Bal,et al.  Inverse diffusion theory of photoacoustics , 2009, 0910.2503.

[41]  Vasilis Ntziachristos,et al.  Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo , 2009 .

[42]  Plamen Stefanov,et al.  Thermoacoustic tomography arising in brain imaging , 2010, 1009.1687.

[43]  Banghe Zhu,et al.  Reconstruction of sectional images in frequency-domain based photoacoustic imaging. , 2011, Optics express.

[44]  Lihong V Wang,et al.  Photoacoustic tomography and sensing in biomedicine , 2009, Physics in medicine and biology.

[45]  Jan Laufer,et al.  Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme. , 2010, Applied optics.

[46]  Teresa Correia,et al.  Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis. , 2010, Journal of biomedical optics.

[47]  Oliver Dorn,et al.  A transport-backtransport method for optical tomography , 1998 .

[48]  Peter Kuchment,et al.  Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.

[49]  Huabei Jiang,et al.  Simultaneous recovery of tissue physiological and acoustic properties and the criteria for wavelength selection in multispectral photoacoustic tomography. , 2009, Optics letters.

[50]  Habib Ammari Optical, ultrasound, and opto-acoustic tomographies , 2012 .

[51]  Vasilis Ntziachristos,et al.  Fast Semi-Analytical Model-Based Acoustic Inversion for Quantitative Optoacoustic Tomography , 2010, IEEE Transactions on Medical Imaging.

[52]  Paul C. Beard,et al.  Photoacoustic tomography with a limited-aperture planar sensor and a reverberant cavity , 2007 .

[53]  Markus Haltmeier Inversion Formulas for a Cylindrical Radon Transform , 2011, SIAM J. Imaging Sci..

[54]  Guillaume Bal,et al.  Inverse transport theory of photoacoustics , 2009, 0908.4012.

[55]  Otmar Scherzer,et al.  Photoacoustic Imaging Taking into Account Attenuation , 2010, 1009.4350.

[56]  Guillaume Bal,et al.  On multi-spectral quantitative photoacoustic tomography in diffusive regime , 2012 .

[57]  B. Pogue,et al.  Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction. , 2005, Applied optics.

[58]  Markus Haltmeier,et al.  Inversion of Spherical Means and the Wave Equation in Even Dimensions , 2007, SIAM J. Appl. Math..

[59]  Hongkai Zhao,et al.  An Efficient Neumann Series-Based Algorithm for Thermoacoustic and Photoacoustic Tomography with Variable Sound Speed , 2011, SIAM J. Imaging Sci..

[60]  S. Arridge Optical tomography in medical imaging , 1999 .

[61]  Vasilis Ntziachristos,et al.  Quantitative point source photoacoustic inversion formulas for scattering and absorbing media. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Guillaume Bal,et al.  Inverse transport theory and applications , 2009 .

[63]  Linh V. Nguyen A family of inversion formulas in thermoacoustic tomography , 2009, 0902.2579.

[64]  Vasilis Ntziachristos,et al.  The effects of acoustic attenuation in optoacoustic signals , 2011, Physics in medicine and biology.

[65]  B. Hooper Optical-thermal response of laser-irradiated tissue , 1996 .

[66]  Guillaume Bal,et al.  Non-uniqueness result for a hybrid inverse problem , 2010 .

[67]  Plamen Stefanov,et al.  Recovery of a source term or a speed with one measurement and applications , 2011, 1103.1097.

[68]  Stefan Andersson-Engels,et al.  A matrix-free algorithm for multiple wavelength fluorescence tomography. , 2009, Optics express.

[69]  Qiang Wang,et al.  Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton method. , 2007, Optics express.

[70]  Otmar Scherzer,et al.  Attenuation Models in Photoacoustics , 2012 .

[71]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[72]  Torsten Görner,et al.  Efficient and accurate computation of spherical mean values at scattered center points , 2012 .

[73]  P. Beard Biomedical photoacoustic imaging , 2011, Interface Focus.

[74]  Dustin Steinhauer A Reconstruction Procedure for Thermoacoustic Tomography in the Case of Limited Boundary Data , 2009 .

[75]  Xiaojun Liu,et al.  Reconstruction of high quality photoacoustic tomography with a limited-view scanning. , 2010, Optics express.

[76]  Lihong V. Wang Ultrasound-Mediated Biophotonic Imaging: A Review of Acousto-Optical Tomography and Photo-Acoustic Tomography , 2004, Disease markers.

[77]  Peter Kuchment,et al.  Mathematics of Hybrid Imaging: A Brief Review , 2011, 1107.2447.

[78]  MARKUS HALTMEIER,et al.  A Mollification Approach for Inverting the Spherical Mean Radon Transform , 2011, SIAM J. Appl. Math..

[79]  Subhadra Srinivasan,et al.  Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data. , 2008, Journal of biomedical optics.

[80]  Frank Natterer,et al.  Photo-acoustic inversion in convex domains , 2012 .

[81]  Chao Tao,et al.  Photoacoustic tomography in scattering biological tissue by using virtual time reversal mirror , 2011 .

[82]  Leonid Kunyansky Thermoacoustic tomography with detectors on an open curve: an efficient reconstruction algorithm , 2008 .

[83]  V. Ntziachristos,et al.  Model-based optoacoustic inversions with incomplete projection data. , 2011, Medical physics.

[84]  G. Uhlmann,et al.  Thermoacoustic tomography with variable sound speed , 2009, 0902.1973.

[85]  Guillaume Bal,et al.  Multi-source quantitative PAT in diffusive regime , 2011 .

[86]  R. Leahy,et al.  Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging , 2005, Physics in medicine and biology.

[87]  Peter Kuchment,et al.  Mathematics of thermoacoustic and photoacoustic tomography , 2007 .

[88]  Habib Ammari,et al.  Reconstruction of the Optical Absorption Coefficient of a Small Absorber from the Absorbed Energy Density , 2011, SIAM J. Appl. Math..

[89]  O Dorn,et al.  Scattering and absorption transport sensitivity functions for optical tomography. , 2000, Optics express.

[90]  Leonid Kunyansky,et al.  Reconstruction of a function from its spherical (circular) means with the centers lying on the surface of certain polygons and polyhedra , 2010, 1009.0288.

[91]  G Paltauf,et al.  Weight factors for limited angle photoacoustic tomography , 2009, Physics in medicine and biology.

[92]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[93]  Linh V. Nguyen,et al.  Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media , 2008 .

[94]  Gaik Ambartsoumian,et al.  Inversion of the circular Radon transform on an annulus , 2010 .

[95]  Leonid Kunyansky A series solution and a fast algorithm for the inversion of the spherical mean Radon transform , 2007 .

[96]  Huabei Jiang,et al.  Transport-based quantitative photoacoustic tomography: simulations and experiments , 2010, Physics in medicine and biology.

[97]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[98]  B. Cox,et al.  Photoacoustic tomography in absorbing acoustic media using time reversal , 2010 .

[99]  Edward Z. Zhang,et al.  Acoustic attenuation compensation in photoacoustic tomography: application to high-resolution 3D imaging of vascular networks in mice , 2011, BiOS.

[100]  Simon R. Arridge,et al.  Multiple Illumination Quantitative Photoacoustic Tomography using Transport and Diffusion Models , 2011 .

[101]  Kui Ren,et al.  Recent Developments in Numerical Techniques for Transport-Based Medical Imaging Methods , 2010 .

[102]  Otmar Scherzer,et al.  Reconstruction formulas for photoacoustic sectional imaging , 2011, 1109.0841.

[103]  Lihong V. Wang,et al.  Tutorial on Photoacoustic Microscopy and Computed Tomography , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[104]  Habib Ammari,et al.  Mathematical Modeling in Photoacoustic Imaging of Small Absorbers , 2010, SIAM Rev..

[105]  Stanley Osher,et al.  Bregman methods in quantitative photoacoustic tomography , 2010 .