Extreme recoils: impact on the detection of gravitational waves from massive black hole binaries

Recent numerical simulations of the coalescence of highly spinning massive black hole binaries (MBHBs) suggest that the remnant can suffer a recoil velocity of the order of few thousand km s−1. We study here, by means of dedicated simulations of black hole build-up, how such extreme recoils could affect the cosmological coalescence rate of MBHBs, placing a robust lower limit for the predicted number of gravitational wave (GW) sources detectable by future space-borne missions (such as the Laser Interferometer Space Antenna, LISA). We consider two main routes for black hole formation: one where seeds are light remnants of Population III stars (≃102 M⊙), and one where seeds are much heavier (≳104 M⊙), formed via the direct gas collapse in primordial nuclear discs. We find that extreme recoil velocities do not compromise the efficient MBHB detection by LISA. If seeds are already massive and/or relatively rare, the detection rate is reduced by only ∼15 per cent. The number of detections drops substantially (by ∼60 per cent) if seeds are instead light and abundant, but in this case the number of predicted coalescences is so high that at least ∼10 sources in a three-year observation are guaranteed.

[1]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[2]  M. Volonteri Gravitational Recoil: Signatures on the Massive Black Hole Population , 2007, astro-ph/0703180.

[3]  M. Miller,et al.  Alignment of the Spins of Supermassive Black Holes Prior to Coalescence , 2007, astro-ph/0703054.

[4]  Y. Zlochower,et al.  Maximum gravitational recoil. , 2007, Physical review letters.

[5]  A. Buonanno,et al.  The Distribution of Recoil Velocities from Merging Black Holes , 2007, astro-ph/0702641.

[6]  José A. González,et al.  Supermassive recoil velocities for binary black-hole mergers with antialigned spins. , 2007, Physical review letters.

[7]  Richard A. Matzner,et al.  Gravitational Recoil from Spinning Binary Black Hole Mergers , 2007, gr-qc/0701143.

[8]  Alberto Sesana,et al.  The imprint of massive black hole formation models on the LISA data stream , 2007, astro-ph/0701556.

[9]  P. Laguna,et al.  Gravitational Recoil Velocities from Eccentric Binary Black Hole Mergers , 2006, astro-ph/0611110.

[10]  M. Rees,et al.  Quasars at z = 6: The Survival of the Fittest , 2006, astro-ph/0607093.

[11]  M. Volonteri,et al.  Constraints on the accretion history of massive black holes from faint X-ray counts , 2006, astro-ph/0606675.

[12]  Cambridge,et al.  Supermassive black hole formation during the assembly of pre-galactic discs , 2006, astro-ph/0606159.

[13]  Dae-Il Choi,et al.  Getting a Kick Out of Numerical Relativity , 2006, astro-ph/0603204.

[14]  T. Damour,et al.  Gravitational recoil during binary black hole coalescence using the effective one body approach , 2006, gr-qc/0602117.

[15]  M. Rees,et al.  Formation of supermassive black holes by direct collapse in pre-galactic haloes , 2006, astro-ph/0602363.

[16]  A. Zentner,et al.  Testing Models of Supermassive Black Hole Seed Formation through Gravity Waves , 2005, astro-ph/0503511.

[17]  T. Abel,et al.  The role of primordial kicks on black hole merger rates , 2005, astro-ph/0609443.

[18]  C. Will,et al.  Gravitational Recoil of Inspiraling Black Hole Binaries to Second Post-Newtonian Order , 2005, astro-ph/0507692.

[19]  J. Wyithe,et al.  Realistic event rates for detection of supermassive black hole coalescence by LISA , 2005, astro-ph/0503210.

[20]  M. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 THE DISTRIBUTION AND COSMIC EVOLUTION OF MASSIVE BLACK HOLE SPINS , 2004 .

[21]  USA,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 THE GRAVITATIONAL WAVE SIGNAL FROM MASSIVE BLACK HOLE BINARIES AND ITS CONTRIBUTION TO THE LISA DATA STREAM , 2004 .

[22]  C. Cutler,et al.  Confusion Noise from LISA Capture Sources , 2004, gr-qc/0409010.

[23]  N. Sugiyama,et al.  Gravitational Waves from Supermassive Black Hole Coalescence in a Hierarchical Galaxy Formation Model , 2004, astro-ph/0404389.

[24]  D. Holz,et al.  Consequences of Gravitational Radiation Recoil , 2004, astro-ph/0402057.

[25]  D. Holz,et al.  How Black Holes Get Their Kicks: Gravitational Radiation Recoil Revisited , 2004, astro-ph/0402056.

[26]  P. Madau,et al.  Low-Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies , 2004, astro-ph/0401543.

[27]  A. University,et al.  Massive black hole seeds from low angular momentum material , 2003, astro-ph/0311487.

[28]  M. Rees,et al.  Early Reionization by Miniquasars , 2003, astro-ph/0310223.

[29]  Peter L. Bender LISA sensitivity below 0.1 mHz , 2003 .

[30]  Alison J. Farmer,et al.  The gravitational wave background from cosmological compact binaries , 2003, astro-ph/0304393.

[31]  A. Jaffe,et al.  Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries , 2002, astro-ph/0210148.

[32]  Piero Madau,et al.  The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation , 2002, astro-ph/0207276.

[33]  A. Loeb,et al.  Low-Frequency Gravitational Waves from Massive Black Hole Binaries: Predictions for LISA and Pulsar Timing Arrays , 2002, astro-ph/0211556.

[34]  S. Hughes Untangling the merger history of massive black holes with LISA , 2001, astro-ph/0108483.

[35]  S. F. Portegies Zwart,et al.  The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. , 2001, astro-ph/0105221.

[36]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[37]  V. Narayanan,et al.  The Merger History of Supermassive Black Holes in Galaxies , 2001, astro-ph/0101196.

[38]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[39]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[40]  S. Hughes,et al.  Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown , 1997, gr-qc/9701039.

[41]  Bernard F. Schutz,et al.  LISA. Laser Interferometer Space Antenna for the detection and observation of gravitational waves. An international project in the field of Fundamental Physics in Space , 1998 .

[42]  M. Begelman,et al.  Bars within bars: a mechanism for fuelling active galactic nuclei , 1989, Nature.

[43]  W. Israel in 300 Years of Gravitation , 1988 .