Computational Contact Formulations for Soft Body Adhesion

This article gives an overview of adhesive contact for soft bodies and focuses on a general computational framework that is suitable for treating a large class of adhesion problems. The contact formulation is based on a non-linear continuum approach that is capable of describing bodies down to length scales of several nanometers. Several finite element formulations are presented, that introduce various approximations in order to increase the computational efficiency. The approaches are illustrated by several examples throughout the text. These include carbon nanotube interaction, adhesion of spheres, nanoindentation, thin film peeling, gecko adhesion and self-cleaning surface mechanisms.

[1]  Peter Wriggers,et al.  Formulation and analysis of a three-dimensional finite element implementation for adhesive contact at the nanoscale , 2009 .

[2]  John W. Hutchinson,et al.  Interface strength, work of adhesion and plasticity in the peel test , 1998 .

[3]  Tod A. Laursen,et al.  A mortar segment-to-segment frictional contact method for large deformations , 2003 .

[4]  Giulio Alfano,et al.  Adaptive hierarchical enrichment for delamination fracture using a decohesive zone model , 2002 .

[5]  Tod A. Laursen,et al.  Two dimensional mortar contact methods for large deformation frictional sliding , 2005 .

[6]  Herbert S. Cheng,et al.  Computer Simulation of Elastic Rough Contacts , 1985 .

[7]  Mary C. Boyce,et al.  Mechanics of deformation of single- and multi-wall carbon nanotubes , 2004 .

[8]  Roger A. Sauer,et al.  A contact mechanics model for quasi‐continua , 2007 .

[9]  P. Wriggers Computational contact mechanics , 2012 .

[10]  I. L. Singer,et al.  Friction and energy dissipation at the atomic scale: A review , 1994 .

[11]  Peter Wriggers,et al.  Mortar based frictional contact formulation for higher order interpolations using the moving friction cone , 2006 .

[12]  J. Greenwood,et al.  Contact of nominally flat surfaces , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[13]  J. Israelachvili Intermolecular and surface forces , 1985 .

[14]  Gerhard A. Holzapfel,et al.  Cn continuous modelling of smooth contact surfaces using NURBS and application to 2D problems , 2003 .

[15]  Peter E. McHugh,et al.  Computational mechanics modelling of cell–substrate contact during cyclic substrate deformation , 2005 .

[16]  M. Cocu,et al.  A consistent model coupling adhesion, friction, and unilateral contact , 1999 .

[17]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[18]  Tongxi Yu,et al.  Mechanics of adhesion in MEMS—a review , 2003 .

[19]  Giorgio Zavarise,et al.  Modeling of mixed-mode debonding in the peel test applied to superficial reinforcements , 2008 .

[20]  B. Krasovitski,et al.  Particle Adhesion to Drops , 2005 .

[21]  P. Wriggers,et al.  Smooth C1‐interpolations for two‐dimensional frictional contact problems , 2001 .

[22]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[23]  Ted Diehl,et al.  On using a penalty-based cohesive-zone finite element approach, Part I: Elastic solution benchmarks , 2008 .

[24]  Adnan Akay,et al.  A numerical model of friction between rough surfaces , 2001 .

[25]  Roger A Sauer,et al.  Multiscale modelling and simulation of the deformation and adhesion of a single gecko seta , 2009, Computer methods in biomechanics and biomedical engineering.

[26]  Ashutosh Agrawal,et al.  Modeling protein-mediated morphology in biomembranes , 2009, Biomechanics and modeling in mechanobiology.

[27]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[28]  H. C. Hamaker The London—van der Waals attraction between spherical particles , 1937 .

[29]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[30]  R. Amal,et al.  Effect of Adhesion on Aggregation in Nanoparticle Dispersions , 2007 .

[31]  Peter Betsch,et al.  A mortar method for energy‐momentum conserving schemes in frictionless dynamic contact problems , 2009 .

[32]  Shaofan Li,et al.  An atomistically enriched continuum model for nanoscale contact mechanics and its application to contact scaling. , 2008, Journal of nanoscience and nanotechnology.

[33]  Roger A. Sauer,et al.  The Peeling Behavior of Thin Films with Finite Bending Stiffness and the Implications on Gecko Adhesion , 2011 .

[34]  P. Wriggers,et al.  A multiscale contact homogenization technique for the modeling of third bodies in the contact interface , 2008 .

[35]  J. Barbera,et al.  Contact mechanics , 1999 .

[36]  P. Wriggers,et al.  Multi-scale Approach for Frictional Contact of Elastomers on Rough Rigid Surfaces , 2009 .

[37]  Peter Wriggers,et al.  Thermal contact conductance characterization via computational contact homogenization: A finite deformation theory framework , 2010 .

[38]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  Michael Wolfe,et al.  J+ = J , 1994, ACM SIGPLAN Notices.

[40]  Binquan Luan,et al.  Contact of single asperities with varying adhesion: comparing continuum mechanics to atomistic simulations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Roger A. Sauer,et al.  An atomic interaction‐based continuum model for computational multiscale contact mechanics , 2007 .

[42]  R. S. Sayles,et al.  A Numerical Model for the Elastic Frictionless Contact of Real Rough Surfaces , 1986 .

[43]  Peter Wriggers,et al.  A strategy for numerical testing of frictional laws with application to contact between soil and concrete , 2000 .

[44]  Shaofan Li,et al.  Multiscale modeling and simulation of soft adhesion and contact of stem cells. , 2011, Journal of the mechanical behavior of biomedical materials.

[45]  V A Zhuravlev,et al.  On the question of theoretical justification of the Amontons-Coulomb law for friction of unlubricated surfaces , 2007 .

[46]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[47]  B. Persson Contact mechanics for randomly rough surfaces , 2006, cond-mat/0603807.

[48]  Giuseppe Carbone,et al.  Adhesion and friction of an elastic half-space in contact with a slightly wavy rigid surface , 2004 .

[49]  Tod A. Laursen,et al.  A segment-to-segment mortar contact method for quadratic elements and large deformations , 2008 .

[50]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[51]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[52]  S. Chowdhury,et al.  Adhesion and adhesional friction at the contact between solids , 1994 .

[53]  Pavel Neuzil,et al.  The nature of the gecko lizard adhesive force. , 2005, Biophysical journal.

[54]  B. Persson,et al.  Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact. , 2007, Physical review letters.

[55]  Lucy T. Zhang,et al.  Coupling of Navier–Stokes equations with protein molecular dynamics and its application to hemodynamics , 2004 .

[56]  V. Derjaguin Theorie des Anhaftens kleiner Teilchen , 1992 .

[57]  Izhak Etsion,et al.  Adhesion Model for Metallic Rough Surfaces , 1988 .

[58]  Liangti Qu,et al.  Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off , 2008, Science.

[59]  B. Persson Elastoplastic contact between randomly rough surfaces. , 2001, Physical review letters.

[60]  Roger A. Sauer,et al.  An atomic interaction-based continuum model for adhesive contact mechanics , 2007 .

[61]  Roger A. Sauer,et al.  Enriched contact finite elements for stable peeling computations , 2011 .

[62]  Ning Ren,et al.  Contact Simulation of Three-Dimensional Rough Surfaces Using Moving Grid Method , 1993 .

[63]  Roger A. Sauer,et al.  A detailed 3D finite element analysis of the peeling behaviour of a gecko spatula , 2013, Computer methods in biomechanics and biomedical engineering.

[64]  B. Derjaguin,et al.  Untersuchungen über die Reibung und Adhäsion, IV , 1934 .

[65]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[66]  T. Laursen Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis , 2002 .

[67]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[68]  M. Cutkosky,et al.  Frictional adhesion: a new angle on gecko attachment , 2006, Journal of Experimental Biology.

[69]  P. Wriggers,et al.  A C1-continuous formulation for 3D finite deformation frictional contact , 2002 .

[70]  C. Lanczos The variational principles of mechanics , 1949 .

[71]  M. Puso,et al.  A mortar segment-to-segment contact method for large deformation solid mechanics , 2004 .

[72]  Roger A. Sauer,et al.  A computational contact model for nanoscale rubber adhesion , 2009 .

[73]  B. Bhushan,et al.  A Numerical Three-Dimensional Model for the Contact of Rough Surfaces by Variational Principle , 1996 .

[74]  Seizo Morita,et al.  Spatially quantized friction with a lattice periodicity , 1996 .

[75]  D. Maugis Adhesion of spheres : the JKR-DMT transition using a dugdale model , 1992 .

[76]  J. Oden,et al.  Computational micro- and macroscopic models of contact and friction: formulation, approach and applications , 1998 .

[77]  Rodney S. Ruoff,et al.  Radial deformation of carbon nanotubes by van der Waals forces , 1993, Nature.

[78]  M. Puso,et al.  A 3D contact smoothing method using Gregory patches , 2002 .

[79]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[80]  Phaedon Avouris,et al.  Deformation of carbon nanotubes by surface van der Waals forces , 1998 .

[81]  T. Laursen,et al.  A framework for development of surface smoothing procedures in large deformation frictional contact analysis , 2001 .

[82]  R. S. Bradley,et al.  LXXIX. The cohesive force between solid surfaces and the surface energy of solids , 1932 .

[83]  K. Kendall Thin-film peeling-the elastic term , 1975 .

[84]  Roger A. Sauer,et al.  A Computational Model for Nanoscale Adhesion between Deformable Solids and Its Application to Gecko Adhesion , 2010 .

[85]  J. Molinari,et al.  Multiscale modeling of two-dimensional contacts. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  Ralph Spolenak,et al.  Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Chung-Yuen Hui,et al.  Collapse of single-walled carbon nanotubes , 2005 .

[88]  A. Volokitin,et al.  On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.