Renormalization: an advanced overview

We present several approaches to renormalization in QFT: the multi-scale analysis in perturbative renormalization, the functional methods \`a la Wetterich equation, and the loop-vertex expansion in non-perturbative renormalization. While each of these is quite well-established, they go beyond standard QFT textbook material, and may be little-known to specialists of each other approach. This review is aimed at bridging this gap.

[1]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[2]  V. Rivasseau,et al.  The Multiscale Loop Vertex Expansion , 2013, 1312.7226.

[3]  V. Rivasseau,et al.  Generalized Constructive Tree Weights , 2013, 1310.2424.

[4]  R. Gurau The 1/N Expansion of Tensor Models Beyond Perturbation Theory , 2013, 1304.2666.

[5]  T. Curtright,et al.  Renormalization group flows, cycles, and c-theorem folklore. , 2012, Physical review letters.

[6]  B. Grinstein,et al.  Scale without conformal invariance at three loops , 2012, 1202.4757.

[7]  H. Chaté,et al.  Nonperturbative renormalization group preserving full-momentum dependence: implementation and quantitative evaluation. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Z. Komargodski,et al.  On renormalization group flows in four dimensions , 2011, 1107.3987.

[9]  Vincent Rivasseau,et al.  Introduction to the Renormalization Group with Applications to Non-Relativistic Quantum Electron Gases , 2011, 1102.5117.

[10]  A. Sfondrini,et al.  FUNCTIONAL RENORMALIZATION OF NONCOMMUTATIVE SCALAR FIELD THEORY , 2010, 1006.5145.

[11]  Martin Hasenbusch,et al.  Finite size scaling study of lattice models in the three-dimensional Ising universality class , 2010, 1004.4486.

[12]  Oliver J. Rosten Fundamentals of the Exact Renormalization Group , 2010, 1003.1366.

[13]  V. Rivasseau,et al.  Loop Vertex Expansion for Phi^2k Theory in Zero Dimension , 2010, 1003.1037.

[14]  M. Smerlak,et al.  Scaling behavior of three-dimensional group field theory , 2009, 0906.5477.

[15]  H. Chaté,et al.  Solutions of renormalization-group flow equations with full momentum dependence. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  I. Suslov,et al.  Estimate of the critical exponents from the field-theoretical renormalization group: mathematical meaning of the “Standard Values” , 2008, 1010.3389.

[17]  D. Toms The Schwinger Action Principle and Effective Action: Action principle in classical field theory , 2007 .

[18]  Manfred Salmhofer,et al.  Renormalization: An Introduction , 2007 .

[19]  C. Tresser,et al.  Chaotic period doubling , 2007, Ergodic Theory and Dynamical Systems.

[20]  V. Rivasseau,et al.  Constructive ϕ4 Field Theory without Tears , 2007, 0706.2457.

[21]  V. Rivasseau Constructive matrix theory , 2007, 0706.1224.

[22]  Bertrand Delamotte,et al.  An Introduction to the Nonperturbative Renormalization Group , 2007, cond-mat/0702365.

[23]  C. Burgess Introduction to Effective Field Theory , 2007, hep-th/0701053.

[24]  M. Disertori,et al.  Vanishing of beta function of non-commutative Φ 4 4 theory to all orders , 2006, hep-th/0612251.

[25]  H. Gies Introduction to the Functional RG and Applications to Gauge Theories , 2006, hep-ph/0611146.

[26]  J. Blaizot,et al.  Nonperturbative renormalization group and momentum dependence of n-point functions. II. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  J. Blaizot,et al.  Nonperturbative renormalization group and momentum dependence of n-point functions. I. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  J. Pawlowski Aspects of the functional renormalisation group , 2005, hep-th/0512261.

[29]  A. Sokal The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, BCC.

[30]  T. Morris Equivalence of local potential approximations , 2005, hep-th/0503161.

[31]  J. Blaizot,et al.  A new method to solve the non-perturbative renormalization group equations , 2005, hep-th/0503103.

[32]  L. Canet Optimization of field-dependent nonperturbative renormalization group flows , 2004, hep-th/0409300.

[33]  H. Grosse,et al.  Renormalisation of ϕ4-Theory on Noncommutative ℝ4 in the Matrix Base , 2004, hep-th/0401128.

[34]  T. O. S. University,et al.  Universality, marginal operators, and limit cycles , 2003, cond-mat/0303297.

[35]  J. Vidal,et al.  Nonperturbative renormalization group approach to the Ising model: A derivative expansion at order ∂4 , 2003, hep-th/0302227.

[36]  J. Vidal,et al.  Optimization of the derivative expansion in the nonperturbative renormalization group , 2002, hep-th/0211055.

[37]  J. Zinn-Justin Quantum Field Theory and Critical Phenomena , 2002 .

[38]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[39]  K. Wilson,et al.  Limit cycles in quantum theories. , 2002, Physical review letters.

[40]  D. Litim Optimized renormalization group flows , 2001, hep-th/0103195.

[41]  T. Morris,et al.  Convergence of derivative expansions in scalar field theory , 2001, hep-th/0102027.

[42]  A. Bonanno,et al.  Towards an accurate determination of the critical exponents with the renormalization group flow equations , 2000, hep-th/0010095.

[43]  G. Jona-Lasinio Renormalization group and probability theory , 2000, cond-mat/0009219.

[44]  D. Litim Optimisation of the exact renormalisation group , 2000, hep-th/0005245.

[45]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2000, hep-ph/0005122.

[46]  C. Bervillier,et al.  Exact renormalization group equations. An Introductory review , 2000, hep-th/0002034.

[47]  A. Connes,et al.  Renormalization in Quantum Field Theory and the Riemann–Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem , 1999, hep-th/9912092.

[48]  A. Connes,et al.  Renormalization in Quantum Field Theory and the Riemann--Hilbert Problem II: The β-Function, Diffeomorphisms and the Renormalization Group , 1999, hep-th/9909126.

[49]  M. Disertori,et al.  Continuous Constructive Fermionic Renormalization , 1998, hep-th/9802145.

[50]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[51]  A. Davie Period doubling forC2+∈ mappings , 1996 .

[52]  S. Bornholdt,et al.  SOLVING NONPERTURBATIVE FLOW EQUATIONS , 1995 .

[53]  S. Weinberg The Quantum Theory of Fields: THE CLUSTER DECOMPOSITION PRINCIPLE , 1995 .

[54]  V. Rivasseau,et al.  Trees, forests and jungles: a botanical garden for cluster expansions , 1994, hep-th/9409094.

[55]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[56]  Robert L. Devaney,et al.  A First Course In Chaotic Dynamical Systems: Theory And Experiment , 1993 .

[57]  H. Leutwyler On the foundations of chiral perturbation theory , 1993, hep-ph/9311274.

[58]  L. Reatto,et al.  First-order phase transitions, the Maxwell construction, and the momentum-space renormalization group. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[59]  T. Morris The Exact renormalization group and approximate solutions , 1993, hep-ph/9308265.

[60]  P. Francesco,et al.  2D gravity and random matrices , 1993, hep-th/9306153.

[61]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[62]  C. Kopper,et al.  Perturbative renormalization of QED via flow equations , 1991 .

[63]  Keith Briggs,et al.  A precise calculation of the Feigenbaum constants , 1991 .

[64]  C. Wetterich,et al.  Average action and the renormalization group equations , 1991 .

[65]  P. Cvitanović Universality in chaos : a reprint selection , 1989 .

[66]  J. Gallas,et al.  Observation of deterministic chaos in electrical discharges in gases. , 1987, Physical review letters.

[67]  T. Kennedy,et al.  Mayer expansions and the Hamilton-Jacobi equation , 1987 .

[68]  Alexander B. Zamolodchikov,et al.  Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory , 1986 .

[69]  J. Magnen,et al.  A renormalizable field theory: The massive Gross-Neveu model in two dimensions , 1986 .

[70]  Giovanni Gallavotti,et al.  Renormalization theory in four-dimensional scalar fields (I) , 1985 .

[71]  K. Gawȩdzki,et al.  Gross-Neveu model through convergent perturbation expansions , 1985 .

[72]  Joseph Polchinski,et al.  Renormalization and effective lagrangians , 1984 .

[73]  K. Wilson The renormalization group and critical phenomena , 1983 .

[74]  M. Feigenbaum Universal behavior in nonlinear systems , 1983 .

[75]  Y. Kao,et al.  Universal Scaling and Chaotic Behavior of a Josephson-Junction Analog , 1982 .

[76]  A. Wolf,et al.  One-Dimensional Dynamics in a Multicomponent Chemical Reaction , 1982 .

[77]  Fortunato Tito Arecchi,et al.  Hopping Mechanism Generating 1f Noise in Nonlinear Systems , 1982 .

[78]  C. Billionnet,et al.  Analytic interpolation and Borel summability of the (λ/N|ΦN|:4)2 models , 1982 .

[79]  O. Lanford A computer-assisted proof of the Feigenbaum conjectures , 1982 .

[80]  Jose Antonio Coarasa Perez,et al.  Evidence for universal chaotic behavior of a driven nonlinear oscillator , 1982 .

[81]  J. Fröhlich,et al.  Borel summability of the 1/N expansion for theN-vector [O(N) non-linear σ] models , 1982 .

[82]  Michael Aizenman,et al.  Geometric analysis of φ4 fields and Ising models. Parts I and II , 1982 .

[83]  Charles W. Smith,et al.  Bifurcation Universality for First-Sound Subharmonic Generation in Superfluid Helium-4 , 1982 .

[84]  J. Fröhlich On the triviality of λϕd4 theories and the approach to the critical point in d(−) > 4 dimensions , 1982 .

[85]  P. Linsay Period Doubling and Chaotic Behavior in a Driven Anharmonic Oscillator , 1981 .

[86]  M. Giglio,et al.  Transition to Chaotic Behavior via a Reproducible Sequence of Period-Doubling Bifurcations , 1981 .

[87]  Pierre Collet,et al.  Universal properties of maps on an interval , 1980 .

[88]  A. Libchaber,et al.  UNE EXPERIENCE DE RAYLEIGH-BENARD DE GEOMETRIE REDUITE ; MULTIPLICATION, ACCROCHAGE ET DEMULTIPLICATION DE FREQUENCES , 1980 .

[89]  Alan D. Sokal,et al.  An improvement of Watson’s theorem on Borel summability , 1980 .

[90]  Mitchell J. Feigenbaum,et al.  The transition to aperiodic behavior in turbulent systems , 1980 .

[91]  Mitchell J. Feigenbaum,et al.  The onset spectrum of turbulence , 1979 .

[92]  Pierre Coullet,et al.  ITÉRATIONS D'ENDOMORPHISMES ET GROUPE DE RENORMALISATION , 1978 .

[93]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[94]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[95]  R. Sénéor,et al.  Phase space cell expansion and borel summability for the Euclidean φ34 theory , 1977 .

[96]  B. Lautrup On High Order Estimates in QED , 1977 .

[97]  R. Sénéor,et al.  Decay properties and borel summability for the Schwinger functions inP(Φ)2 theories , 1975 .

[98]  G. Jona-Lasinio The renormalization group: A probabilistic view , 1975 .

[99]  David J. Gross,et al.  Dynamical symmetry breaking in asymptotically free field theories , 1974 .

[100]  R. Jackiw Functional evaluation of the effective potential , 1974 .

[101]  P. Mitter,et al.  Asymptotic scale invariance in a massive Thirring model with U(n) symmetry , 1973 .

[102]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[103]  F. Wilczek,et al.  Ultraviolet Behavior of Non-Abelian Gauge Theories , 1973 .

[104]  Robert Schrader,et al.  Axioms for Euclidean Green's functions II , 1973 .

[105]  W. Zimmermann Composite operators in the perturbation theory of renormalizable interactions , 1973 .

[106]  Kenneth G. Wilson,et al.  Feynman graph expansion for critical exponents , 1972 .

[107]  Michael E. Fisher,et al.  Critical Exponents in 3.99 Dimensions , 1972 .

[108]  K. Wilson Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture , 1971 .

[109]  A. Wightman INTRODUCTION TO SOME ASPECTS OF THE RELATIVISTIC DYNAMICS OF QUANTIZED FIELDS. , 1968 .

[110]  L. Kadanoff Scaling laws for Ising models near T(c) , 1966 .

[111]  G. Jona-Lasinio Relativistic field theories with symmetry-breaking solutions , 1964 .

[112]  N. N. Bogoliubov,et al.  Introduction to the theory of quantized fields , 1960 .

[113]  N. N. Bogoliubow,et al.  Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder , 1957 .

[114]  Wolfhard Janke,et al.  First-Order Phase Transitions , 2003 .

[115]  I. Herbut,et al.  renormalization group , 1999 .

[116]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[117]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[118]  Vincent Rivasseau,et al.  From Perturbative to Constructive Renormalization , 1991 .

[119]  Pierre Bergé,et al.  Order within chaos : towards a deterministic approach to turbulence , 1984 .

[120]  A. Libchaber,et al.  Experimental aspects of the period doubling scenario , 1983 .

[121]  J. Glimm,et al.  Quantum Physics: A Functional Integral Point of View , 1981 .

[122]  J. Eckmann,et al.  Iterated maps on the interval as dynamical systems , 1980 .

[123]  W. Zimmermann Convergence of Bogoliubov's method of renormalization in momentum space , 1969 .

[124]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[125]  Klaus Hepp,et al.  Proof of the Bogoliubov-Parasiuk theorem on renormalization , 1966 .

[126]  A. Wightman,et al.  PCT, spin and statistics, and all that , 1964 .

[127]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[128]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .