Renormalization: an advanced overview
暂无分享,去创建一个
[1] Ralph Abraham,et al. Foundations Of Mechanics , 2019 .
[2] V. Rivasseau,et al. The Multiscale Loop Vertex Expansion , 2013, 1312.7226.
[3] V. Rivasseau,et al. Generalized Constructive Tree Weights , 2013, 1310.2424.
[4] R. Gurau. The 1/N Expansion of Tensor Models Beyond Perturbation Theory , 2013, 1304.2666.
[5] T. Curtright,et al. Renormalization group flows, cycles, and c-theorem folklore. , 2012, Physical review letters.
[6] B. Grinstein,et al. Scale without conformal invariance at three loops , 2012, 1202.4757.
[7] H. Chaté,et al. Nonperturbative renormalization group preserving full-momentum dependence: implementation and quantitative evaluation. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[8] Z. Komargodski,et al. On renormalization group flows in four dimensions , 2011, 1107.3987.
[9] Vincent Rivasseau,et al. Introduction to the Renormalization Group with Applications to Non-Relativistic Quantum Electron Gases , 2011, 1102.5117.
[10] A. Sfondrini,et al. FUNCTIONAL RENORMALIZATION OF NONCOMMUTATIVE SCALAR FIELD THEORY , 2010, 1006.5145.
[11] Martin Hasenbusch,et al. Finite size scaling study of lattice models in the three-dimensional Ising universality class , 2010, 1004.4486.
[12] Oliver J. Rosten. Fundamentals of the Exact Renormalization Group , 2010, 1003.1366.
[13] V. Rivasseau,et al. Loop Vertex Expansion for Phi^2k Theory in Zero Dimension , 2010, 1003.1037.
[14] M. Smerlak,et al. Scaling behavior of three-dimensional group field theory , 2009, 0906.5477.
[15] H. Chaté,et al. Solutions of renormalization-group flow equations with full momentum dependence. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[16] I. Suslov,et al. Estimate of the critical exponents from the field-theoretical renormalization group: mathematical meaning of the “Standard Values” , 2008, 1010.3389.
[17] D. Toms. The Schwinger Action Principle and Effective Action: Action principle in classical field theory , 2007 .
[18] Manfred Salmhofer,et al. Renormalization: An Introduction , 2007 .
[19] C. Tresser,et al. Chaotic period doubling , 2007, Ergodic Theory and Dynamical Systems.
[20] V. Rivasseau,et al. Constructive ϕ4 Field Theory without Tears , 2007, 0706.2457.
[21] V. Rivasseau. Constructive matrix theory , 2007, 0706.1224.
[22] Bertrand Delamotte,et al. An Introduction to the Nonperturbative Renormalization Group , 2007, cond-mat/0702365.
[23] C. Burgess. Introduction to Effective Field Theory , 2007, hep-th/0701053.
[24] M. Disertori,et al. Vanishing of beta function of non-commutative Φ 4 4 theory to all orders , 2006, hep-th/0612251.
[25] H. Gies. Introduction to the Functional RG and Applications to Gauge Theories , 2006, hep-ph/0611146.
[26] J. Blaizot,et al. Nonperturbative renormalization group and momentum dependence of n-point functions. II. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[27] J. Blaizot,et al. Nonperturbative renormalization group and momentum dependence of n-point functions. I. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[28] J. Pawlowski. Aspects of the functional renormalisation group , 2005, hep-th/0512261.
[29] A. Sokal. The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, BCC.
[30] T. Morris. Equivalence of local potential approximations , 2005, hep-th/0503161.
[31] J. Blaizot,et al. A new method to solve the non-perturbative renormalization group equations , 2005, hep-th/0503103.
[32] L. Canet. Optimization of field-dependent nonperturbative renormalization group flows , 2004, hep-th/0409300.
[33] H. Grosse,et al. Renormalisation of ϕ4-Theory on Noncommutative ℝ4 in the Matrix Base , 2004, hep-th/0401128.
[34] T. O. S. University,et al. Universality, marginal operators, and limit cycles , 2003, cond-mat/0303297.
[35] J. Vidal,et al. Nonperturbative renormalization group approach to the Ising model: A derivative expansion at order ∂4 , 2003, hep-th/0302227.
[36] J. Vidal,et al. Optimization of the derivative expansion in the nonperturbative renormalization group , 2002, hep-th/0211055.
[37] J. Zinn-Justin. Quantum Field Theory and Critical Phenomena , 2002 .
[38] Gregory Gutin,et al. Digraphs - theory, algorithms and applications , 2002 .
[39] K. Wilson,et al. Limit cycles in quantum theories. , 2002, Physical review letters.
[40] D. Litim. Optimized renormalization group flows , 2001, hep-th/0103195.
[41] T. Morris,et al. Convergence of derivative expansions in scalar field theory , 2001, hep-th/0102027.
[42] A. Bonanno,et al. Towards an accurate determination of the critical exponents with the renormalization group flow equations , 2000, hep-th/0010095.
[43] G. Jona-Lasinio. Renormalization group and probability theory , 2000, cond-mat/0009219.
[44] D. Litim. Optimisation of the exact renormalisation group , 2000, hep-th/0005245.
[45] C. Wetterich,et al. Non-perturbative renormalization flow in quantum field theory and statistical physics , 2000, hep-ph/0005122.
[46] C. Bervillier,et al. Exact renormalization group equations. An Introductory review , 2000, hep-th/0002034.
[47] A. Connes,et al. Renormalization in Quantum Field Theory and the Riemann–Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem , 1999, hep-th/9912092.
[48] A. Connes,et al. Renormalization in Quantum Field Theory and the Riemann--Hilbert Problem II: The β-Function, Diffeomorphisms and the Renormalization Group , 1999, hep-th/9909126.
[49] M. Disertori,et al. Continuous Constructive Fermionic Renormalization , 1998, hep-th/9802145.
[50] J. Cardy. Scaling and Renormalization in Statistical Physics , 1996 .
[51] A. Davie. Period doubling forC2+∈ mappings , 1996 .
[52] S. Bornholdt,et al. SOLVING NONPERTURBATIVE FLOW EQUATIONS , 1995 .
[53] S. Weinberg. The Quantum Theory of Fields: THE CLUSTER DECOMPOSITION PRINCIPLE , 1995 .
[54] V. Rivasseau,et al. Trees, forests and jungles: a botanical garden for cluster expansions , 1994, hep-th/9409094.
[55] S. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .
[56] Robert L. Devaney,et al. A First Course In Chaotic Dynamical Systems: Theory And Experiment , 1993 .
[57] H. Leutwyler. On the foundations of chiral perturbation theory , 1993, hep-ph/9311274.
[58] L. Reatto,et al. First-order phase transitions, the Maxwell construction, and the momentum-space renormalization group. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[59] T. Morris. The Exact renormalization group and approximate solutions , 1993, hep-ph/9308265.
[60] P. Francesco,et al. 2D gravity and random matrices , 1993, hep-th/9306153.
[61] C. Wetterich,et al. Exact evolution equation for the effective potential , 1993, 1710.05815.
[62] C. Kopper,et al. Perturbative renormalization of QED via flow equations , 1991 .
[63] Keith Briggs,et al. A precise calculation of the Feigenbaum constants , 1991 .
[64] C. Wetterich,et al. Average action and the renormalization group equations , 1991 .
[65] P. Cvitanović. Universality in chaos : a reprint selection , 1989 .
[66] J. Gallas,et al. Observation of deterministic chaos in electrical discharges in gases. , 1987, Physical review letters.
[67] T. Kennedy,et al. Mayer expansions and the Hamilton-Jacobi equation , 1987 .
[68] Alexander B. Zamolodchikov,et al. Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory , 1986 .
[69] J. Magnen,et al. A renormalizable field theory: The massive Gross-Neveu model in two dimensions , 1986 .
[70] Giovanni Gallavotti,et al. Renormalization theory in four-dimensional scalar fields (I) , 1985 .
[71] K. Gawȩdzki,et al. Gross-Neveu model through convergent perturbation expansions , 1985 .
[72] Joseph Polchinski,et al. Renormalization and effective lagrangians , 1984 .
[73] K. Wilson. The renormalization group and critical phenomena , 1983 .
[74] M. Feigenbaum. Universal behavior in nonlinear systems , 1983 .
[75] Y. Kao,et al. Universal Scaling and Chaotic Behavior of a Josephson-Junction Analog , 1982 .
[76] A. Wolf,et al. One-Dimensional Dynamics in a Multicomponent Chemical Reaction , 1982 .
[77] Fortunato Tito Arecchi,et al. Hopping Mechanism Generating 1f Noise in Nonlinear Systems , 1982 .
[78] C. Billionnet,et al. Analytic interpolation and Borel summability of the (λ/N|ΦN|:4)2 models , 1982 .
[79] O. Lanford. A computer-assisted proof of the Feigenbaum conjectures , 1982 .
[80] Jose Antonio Coarasa Perez,et al. Evidence for universal chaotic behavior of a driven nonlinear oscillator , 1982 .
[81] J. Fröhlich,et al. Borel summability of the 1/N expansion for theN-vector [O(N) non-linear σ] models , 1982 .
[82] Michael Aizenman,et al. Geometric analysis of φ4 fields and Ising models. Parts I and II , 1982 .
[83] Charles W. Smith,et al. Bifurcation Universality for First-Sound Subharmonic Generation in Superfluid Helium-4 , 1982 .
[84] J. Fröhlich. On the triviality of λϕd4 theories and the approach to the critical point in d(−) > 4 dimensions , 1982 .
[85] P. Linsay. Period Doubling and Chaotic Behavior in a Driven Anharmonic Oscillator , 1981 .
[86] M. Giglio,et al. Transition to Chaotic Behavior via a Reproducible Sequence of Period-Doubling Bifurcations , 1981 .
[87] Pierre Collet,et al. Universal properties of maps on an interval , 1980 .
[88] A. Libchaber,et al. UNE EXPERIENCE DE RAYLEIGH-BENARD DE GEOMETRIE REDUITE ; MULTIPLICATION, ACCROCHAGE ET DEMULTIPLICATION DE FREQUENCES , 1980 .
[89] Alan D. Sokal,et al. An improvement of Watson’s theorem on Borel summability , 1980 .
[90] Mitchell J. Feigenbaum,et al. The transition to aperiodic behavior in turbulent systems , 1980 .
[91] Mitchell J. Feigenbaum,et al. The onset spectrum of turbulence , 1979 .
[92] Pierre Coullet,et al. ITÉRATIONS D'ENDOMORPHISMES ET GROUPE DE RENORMALISATION , 1978 .
[93] M. Feigenbaum. Quantitative universality for a class of nonlinear transformations , 1978 .
[94] J. A. Bondy,et al. Graph Theory with Applications , 1978 .
[95] R. Sénéor,et al. Phase space cell expansion and borel summability for the Euclidean φ34 theory , 1977 .
[96] B. Lautrup. On High Order Estimates in QED , 1977 .
[97] R. Sénéor,et al. Decay properties and borel summability for the Schwinger functions inP(Φ)2 theories , 1975 .
[98] G. Jona-Lasinio. The renormalization group: A probabilistic view , 1975 .
[99] David J. Gross,et al. Dynamical symmetry breaking in asymptotically free field theories , 1974 .
[100] R. Jackiw. Functional evaluation of the effective potential , 1974 .
[101] P. Mitter,et al. Asymptotic scale invariance in a massive Thirring model with U(n) symmetry , 1973 .
[102] K. Wilson,et al. The Renormalization group and the epsilon expansion , 1973 .
[103] F. Wilczek,et al. Ultraviolet Behavior of Non-Abelian Gauge Theories , 1973 .
[104] Robert Schrader,et al. Axioms for Euclidean Green's functions II , 1973 .
[105] W. Zimmermann. Composite operators in the perturbation theory of renormalizable interactions , 1973 .
[106] Kenneth G. Wilson,et al. Feynman graph expansion for critical exponents , 1972 .
[107] Michael E. Fisher,et al. Critical Exponents in 3.99 Dimensions , 1972 .
[108] K. Wilson. Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture , 1971 .
[109] A. Wightman. INTRODUCTION TO SOME ASPECTS OF THE RELATIVISTIC DYNAMICS OF QUANTIZED FIELDS. , 1968 .
[110] L. Kadanoff. Scaling laws for Ising models near T(c) , 1966 .
[111] G. Jona-Lasinio. Relativistic field theories with symmetry-breaking solutions , 1964 .
[112] N. N. Bogoliubov,et al. Introduction to the theory of quantized fields , 1960 .
[113] N. N. Bogoliubow,et al. Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder , 1957 .
[114] Wolfhard Janke,et al. First-Order Phase Transitions , 2003 .
[115] I. Herbut,et al. renormalization group , 1999 .
[116] Gilbert Labelle,et al. Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.
[117] Steven H. Strogatz,et al. Nonlinear Dynamics and Chaos , 2024 .
[118] Vincent Rivasseau,et al. From Perturbative to Constructive Renormalization , 1991 .
[119] Pierre Bergé,et al. Order within chaos : towards a deterministic approach to turbulence , 1984 .
[120] A. Libchaber,et al. Experimental aspects of the period doubling scenario , 1983 .
[121] J. Glimm,et al. Quantum Physics: A Functional Integral Point of View , 1981 .
[122] J. Eckmann,et al. Iterated maps on the interval as dynamical systems , 1980 .
[123] W. Zimmermann. Convergence of Bogoliubov's method of renormalization in momentum space , 1969 .
[124] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .
[125] Klaus Hepp,et al. Proof of the Bogoliubov-Parasiuk theorem on renormalization , 1966 .
[126] A. Wightman,et al. PCT, spin and statistics, and all that , 1964 .
[127] W. T. Tutte,et al. A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.
[128] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .