Femtosecond laser oscillators for high-field science

Ultrafast laser oscillators have become ubiquitous in science and technology. For many years, however, their pulse energy has been limited to the nanojoule regime. Applications requiring more intense pulses relied on complex amplifier systems, which typically operate at low pulse repetition rates of the order of kilohertz. Recently, the pulse energy of femtosecond laser oscillators has greatly increased, such that some of these experiments can now be driven at multimegahertz repetition rates, which opens promising new avenues for many applications. We review the current state of the art of high-energy femtosecond laser oscillators, in particular mode-locked thin-disk lasers, and discuss their potential to drive high-field science experiments at multimegahertz repetition rates. Diode-pumped thin-disk lasers are now capable of generating femtosecond light pulses with a pulse energy in the microjoule regime at multi-megahertz repetition rates. This review describes the progress that has been made in scaling the performance of such lasers and the applications that may benefit as a result.

[1]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[2]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[3]  M. Murnane,et al.  Positive-dispersion cavity-dumped Ti: sapphire laser oscillator and its application to white light generation. , 2006, Optics express.

[4]  Lawrence Shah,et al.  Micromachining with a 50 W, 50 muJ, subpicosecond fiber laser system. , 2006, Optics express.

[5]  Norman Hodgson,et al.  Solid State Lasers XVII: Technology and Devices , 2007 .

[6]  D. Miller,et al.  Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber. , 1992, Optics letters.

[7]  Rüdiger Paschotta,et al.  Powerful red-green-blue laser source pumped with a mode-locked thin disk laser. , 2004, Optics letters.

[8]  Daniel R. Grischkowsky,et al.  Optical pulse compression based on enhanced frequency chirping , 1982 .

[9]  Ecole Nationale,et al.  Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation , 2004 .

[10]  Thomas Udem,et al.  A frequency comb in the extreme ultraviolet , 2005, Nature.

[11]  H. Helm,et al.  Dynamics of strong-field above-threshold ionization of argon: Comparison between experiment and theory , 2003 .

[12]  J. Limpert,et al.  High-power rod-type photonic crystal fiber laser. , 2005, Optics express.

[13]  A. Giesen,et al.  Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  B. Witzel,et al.  Correlation between double and nonresonant single ionization. , 2002, Physical Review Letters.

[15]  Günter Huber,et al.  Broadly tunable high-power Yb:Lu(2)O(3) thin disk laser with 80% slope efficiency. , 2007, Optics express.

[16]  T. Südmeyer,et al.  Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level. , 2008, Optics express.

[17]  J. Limpert,et al.  90 W average power 100 microJ energy femtosecond fiber chirped-pulse amplification system. , 2007, Optics letters.

[18]  H. Helm,et al.  Channel switching in above-threshold ionization of xenon , 1998 .

[19]  Liang Dong,et al.  Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 microm(2). , 2006, Optics express.

[20]  K. Petermann,et al.  Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration , 2007 .

[21]  R. Dörner,et al.  Correlated electron emission in multiphoton double ionization , 2000, Nature.

[22]  Ferenc Krausz,et al.  Approaching the microjoule frontier with femtosecond laser oscillators , 2005 .

[23]  Andy Steinmann,et al.  High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator. , 2005, Optics letters.

[24]  Adolf Giesen,et al.  Scalable concept for diode-pumped high-power solid-state lasers , 1994 .

[25]  Dyer,et al.  Images of photoelectrons formed in intense laser fields. , 1993, Physical review letters.

[26]  J. Limpert,et al.  131 W 220 fs fiber laser system. , 2005, Optics letters.

[27]  J G Fujimoto,et al.  Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. , 1999, Optics letters.

[28]  P. Balcou,et al.  Observation of a Train of Attosecond Pulses from High Harmonic Generation , 2001, Science.

[29]  Jun Ye,et al.  Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. , 2005, Physical review letters.

[30]  V. G. Shcherbitsky,et al.  240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO(4))(2) laser. , 2002, Optics letters.

[31]  James D. Kafka,et al.  Picosecond and femtosecond pulse generation in a regeneratively mode-locked Ti:sapphire laser , 1992 .

[32]  G. Holtom,et al.  Mode-locked Yb:KGW laser longitudinally pumped by polarization-coupled diode bars. , 2006, Optics letters.

[33]  B E Bouma,et al.  Low-repetition-rate high-peak-power Kerr-lens mode-locked TiAl(2)O(3) laser with a multiple-pass cavity. , 1999, Optics letters.

[34]  T. Südmeyer,et al.  16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser. , 2000, Optics letters.

[35]  L Gallmann,et al.  Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. , 1999, Optics letters.

[36]  R. Yen,et al.  Compression of femtosecond optical pulses , 1982 .

[37]  P. Agostini,et al.  The physics of attosecond light pulses , 2004 .

[38]  F. Kärtner,et al.  Stabilization of solitonlike pulses with a slow saturable absorber. , 1995, Optics letters.

[39]  W. S. Wong,et al.  Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers. , 2005, Optics letters.

[40]  N. Sarukura,et al.  High-repetition-rate, high-average-power, mode-locked Ti:sapphire laser with an intracavity continuous-wave amplification scheme , 1999 .

[41]  Dyer,et al.  Resonant and nonresonant multiphoton ionization of helium. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[42]  K. Petermann,et al.  Structural , spectroscopic , and tunable laser properties of Yb 3 +-doped NaGd , 2006 .

[43]  L. A. Lompré,et al.  Multiple-harmonic conversion of 1064 nm radiation in rare gases , 1988 .

[44]  K. Petermann,et al.  Efficient femtosecond high power Yb:Lu(2)O(3) thin disk laser. , 2007, Optics express.

[45]  T. Südmeyer,et al.  60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser. , 2003, Optics letters.

[46]  N. Matuschek,et al.  Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics. , 1999, Science.

[47]  U. Griebner,et al.  Passively mode-locked Yb:Lu2O3 laser , 2004, CLEO 2004.

[48]  J. Ullrich,et al.  Ionization of noble gases with pulses directly from a laser oscillator. , 2006, Optics letters.

[49]  M M Murnane,et al.  Laser based angle-resolved photoemission, the sudden approximation, and quasiparticle-like spectral peaks in Bi2Sr2CaCu2O(8+delta). , 2006, Physical review letters.

[50]  Herwig Kogelnik,et al.  Off-Axis Paths in Spherical Mirror Interferometers , 1964 .

[51]  Valentin Petrov,et al.  Structural, spectroscopic, and tunable laser properties of Yb3+-doped NaGd(WO4)2 , 2006 .

[52]  U. Morgner,et al.  Microjoule pulses from a passively mode-locked Yb:KY(WO(4))(2) thin-disk oscillator with cavity dumping. , 2007, Optics letters.

[53]  Willy L. Bohn,et al.  Mode dynamics and thermal lens effects of thin-disk lasers , 2008, SPIE LASE.

[54]  Charles K. Rhodes,et al.  Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases , 1987 .

[55]  G. Mourou,et al.  Laser ablation and micromachining with ultrashort laser pulses , 1997 .

[56]  Matthias Golling,et al.  Pulse energy scaling to 5 μJ from a femtosecond thin disk laser , 2006 .

[57]  Jun Ye,et al.  Cavity-enhanced similariton Yb-fiber laser frequency comb: 3 x 10(14) W/cm2 peak intensity at 136 MHz. , 2007, Optics letters.

[58]  E. Anderson,et al.  Soft X-ray microscopy at a spatial resolution better than 15 nm , 2005, Nature.

[59]  K. Sokolowski-Tinten,et al.  Laser-solid interaction in the femtosecond time regime , 1997 .

[60]  Eric M. Gullikson,et al.  Coherent Soft X-ray Generation in the Water Window with Quasi-Phase Matching , 2003, Science.

[61]  U. Griebner,et al.  Passively mode-locked Yb:Lu(2)O(3) laser. , 2004, Optics express.

[62]  D J Richardson,et al.  Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber. , 2003, Optics letters.

[63]  J. Neuhaus Passively mode-locked Yb:YAG thin-disk laser with active multipass geometry , 2009 .