Specific Self‐Assembly of Single Lipid Vesicles in Nanoplasmonic Apertures in Gold

A combination of material-specific surface chemistry, sequence-specific DNA hybridization, and size exclusion on the nanometer scale can be combined for high-precision self-assembly of lipid vesicles (see figure) to localized surface-plasmon-resonance-active nanoholes in thin Au films on SiO2.

[1]  L. F. Hoyt New Table of the Refractive Index of Pure Glycerol at 20°C , 1934 .

[2]  R. Weis,et al.  Supported planar membranes in studies of cell-cell recognition in the immune system. , 1986, Biochimica et biophysica acta.

[3]  J. Rigaud,et al.  Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by triton X-100, octyl glucoside, and sodium cholate. , 1988, Biochemistry.

[4]  Claus Duschl,et al.  A new class of thiolipids for the attachment of lipid bilayers on gold surfaces , 1994 .

[5]  E. Sackmann,et al.  Supported Membranes: Scientific and Practical Applications , 1996, Science.

[6]  S. Boxer,et al.  Architecture and function of membrane proteins in planar supported bilayers: a study with photosynthetic reaction centers. , 1996, Biochemistry.

[7]  B. Kasemo,et al.  Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. , 1998, Biophysical journal.

[8]  C. Steinem,et al.  Piezoelectric Mass-Sensing Devices as Biosensors-An Alternative to Optical Biosensors? , 2000, Angewandte Chemie.

[9]  Charles T. Campbell,et al.  Quantification of Tight Binding to Surface-Immobilized Phospholipid Vesicles Using Surface Plasmon Resonance: Binding Constant of Phospholipase A2 , 2000 .

[10]  Bernhard Lamprecht,et al.  Spectroscopy of single metallic nanoparticles using total internal reflection microscopy , 2000 .

[11]  Z. Salamon,et al.  Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape. , 2001, Biophysical journal.

[12]  J. Baumberg,et al.  Confined Surface Plasmons in Gold Photonic Nanocavities , 2001 .

[13]  Marcus Textor,et al.  Poly(l-lysine)-g-poly(ethylene glycol) Layers on Metal Oxide Surfaces: Surface-Analytical Characterization and Resistance to Serum and Fibrinogen Adsorption , 2001 .

[14]  G. Danuser,et al.  A novel approach to produce biologically relevant chemical patterns at the nanometer scale: Selective molecular assembly patterning combined with colloidal lithography , 2002 .

[15]  Fredrik Höök,et al.  Formation of Supported Lipid Bilayer Membranes on SiO2 from Proteoliposomes Containing Transmembrane Proteins , 2003 .

[16]  Adam D. McFarland,et al.  Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity , 2003 .

[17]  Markus Antonietti,et al.  Vesicles and Liposomes: A Self‐Assembly Principle Beyond Lipids , 2003 .

[18]  Fredrik Höök,et al.  Intact Vesicle Adsorption and Supported Biomembrane Formation from Vesicles in Solution: Influence of Surface Chemistry, Vesicle Size, Temperature, and Osmotic Pressure† , 2003 .

[19]  B. Frisken,et al.  The pressure-dependence of the size of extruded vesicles. , 2003, Biophysical journal.

[20]  B. Kasemo,et al.  Control of nanoparticle film structure for colloidal lithography , 2003 .

[21]  F. Höök,et al.  Patterns of DNA‐Labeled and scFv‐Antibody‐Carrying Lipid Vesicles Directed by Material‐Specific Immobilization of DNA and Supported Lipid Bilayer Formation on an Au/SiO2 Template , 2003, Chembiochem : a European journal of chemical biology.

[22]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[23]  T. Klar,et al.  Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering , 2003 .

[24]  E. Delamarche,et al.  Self-assembled microarrays of attoliter molecular vessels. , 2003, Angewandte Chemie.

[25]  Matthew A Cooper,et al.  Advances in membrane receptor screening and analysis , 2004, Journal of molecular recognition : JMR.

[26]  Thomas W. Ebbesen,et al.  Optical transmission properties of a single subwavelength aperture in a real metal , 2004 .

[27]  F. Höök,et al.  Bivalent cholesterol-based coupling of oligonucletides to lipid membrane assemblies. , 2004, Journal of the American Chemical Society.

[28]  Michal Lahav,et al.  Biological sensing using transmission surface plasmon resonance spectroscopy. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[29]  Mikael Käll,et al.  Optical Spectroscopy of Nanometric Holes in Thin Gold Films , 2004 .

[30]  E. Hutter,et al.  Exploitation of Localized Surface Plasmon Resonance , 2004 .

[31]  Ashutosh Chilkoti,et al.  Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. , 2004, Analytical chemistry.

[32]  W. Knoll,et al.  The protein-tethered lipid bilayer: a novel mimic of the biological membrane. , 2004, Biophysical journal.

[33]  S. Boxer,et al.  General method for modification of liposomes for encoded assembly on supported bilayers. , 2005, Journal of the American Chemical Society.

[34]  Hagai Cohen,et al.  Sensitivity of transmission surface plasmon resonance (T-SPR) spectroscopy: self-assembled multilayers on evaporated gold island films. , 2005, Chemistry.

[35]  Joshua LaBaer,et al.  Emerging tools for real‐time label‐free detection of interactions on functional protein microarrays , 2005, The FEBS journal.

[36]  Mikael Käll,et al.  Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. , 2005, Journal of the American Chemical Society.

[37]  George C Schatz,et al.  Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. , 2005, The journal of physical chemistry. B.

[38]  Mikael Käll,et al.  Plasmonic sensing characteristics of single nanometric holes. , 2005, Nano letters.

[39]  T. Ebbesen,et al.  Molecule–Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All‐Optical Switching , 2006 .

[40]  Fredrik Höök,et al.  Improving the instrumental resolution of sensors based on localized surface plasmon resonance. , 2006, Analytical chemistry.

[41]  Luke P. Lee,et al.  Fluorescence enhancement of quantum dots enclosed in Au nanopockets with subwavelength aperture , 2006 .

[42]  Andreas Janshoff,et al.  Transport across artificial membranes–an analytical perspective , 2006, Analytical and bioanalytical chemistry.

[43]  W. Barnes,et al.  Long-Range Refractive Index Sensing Using Plasmonic Nanostructures , 2007 .

[44]  Bo Liedberg,et al.  Quantitative interpretation of gold nanoparticle-based bioassays designed for detection of immunocomplex formation , 2007, Biointerphases.

[45]  M. Käll,et al.  Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. , 2007, Nano letters.

[46]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[47]  Fredrik Höök,et al.  Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template. , 2007, Nano letters.

[48]  Jonas O. Tegenfeldt,et al.  Generic surface modification strategy for sensing applications based on Au/SiO2 nanostructures , 2007, Biointerphases.

[49]  Adam Wax,et al.  Analysis of total uncertainty in spectral peak measurements for plasmonic nanoparticle-based biosensors. , 2007, Applied optics.