Self-assembly of DNA nanostructures in different cations

The programmable nature of DNA allows the construction of custom-designed static and dynamic nanostructures, and assembly conditions typically require high concentrations of magnesium ions which restricts their applications. In other solution conditions tested for DNA nanostructure assembly, only a limited set of divalent and monovalent ions have been used so far (typically Mg2+ and Na+). Here, we investigate the assembly of DNA nanostructures in a wide variety of ions using nanostructures of different sizes: a double-crossover motif (76 bp), a three-point-star motif (∼134 bp), a DNA tetrahedron (534 bp) and a DNA origami triangle (7221 bp). We show successful assembly of a majority of these structures in Ca2+, Ba2+, Na+, K+ and Li+ and provide quantified assembly yields using gel electrophoresis and visual confirmation of a DNA origami triangle using atomic force microscopy. We further show that structures assembled in monovalent ions (Na+, K+ and Li+) exhibit up to a 10-fold higher nuclease resistance compared to those assembled in divalent ions (Mg2+, Ca2+ and Ba2+). Our work presents new assembly conditions for a wide range of DNA nanostructures with enhanced biostability.

[1]  Seok-Cheol Hong,et al.  Two opposing effects of monovalent cations on the stability of i-motif structure , 2022, bioRxiv.

[2]  C. Mao,et al.  Boosted Productivity in Single‐Tile‐Based DNA Polyhedra Assembly by Simple Cation Replacement , 2022, Chembiochem : a European journal of chemical biology.

[3]  L. Di Michele,et al.  Cation-Responsive and Photocleavable Hydrogels from Noncanonical Amphiphilic DNA Nanostructures , 2021, Nano letters.

[4]  H. Pei,et al.  Molecular convolutional neural networks with DNA regulatory circuits , 2021, Nature Machine Intelligence.

[5]  Feng-Shou Zhang,et al.  Comparison of the ionic effects of Ca2+ and Mg2+ on nucleic acids in liquids , 2021, Journal of Molecular Liquids.

[6]  U. Keyser,et al.  Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures , 2021, Journal of the American Chemical Society.

[7]  Martín J Lavecchia,et al.  DNA cleavage mechanism by metal complexes of Cu(II), Zn(II) and VO(IV) with a schiff-base ligand. , 2021, Biochimie.

[8]  A. Chandrasekaran Nuclease resistance of DNA nanostructures , 2021, Nature Reviews Chemistry.

[9]  Ken Halvorsen,et al.  Hybrid DNA/RNA nanostructures with 2'-5' linkages. , 2020, Nanoscale.

[10]  N. Kasyanenko,et al.  Stabilization of DNA by sodium and magnesium ions during the synthesis of DNA-bridged gold nanoparticles , 2020, Nanotechnology.

[11]  J. Resende,et al.  DNA binding, cleavage, apoptosis and cytotoxicity studies of three heteroleptic nickel complexes bearing β-diketones , 2020 .

[12]  Arun Richard Chandrasekaran,et al.  DNA nanoswitch barcodes for multiplexed biomarker profiling , 2020, bioRxiv.

[13]  Ken Halvorsen,et al.  Nuclease Degradation Analysis of DNA Nanostructures Using Gel Electrophoresis , 2020, Current protocols in nucleic acid chemistry.

[14]  G. Grundmeier,et al.  Self-assembly of highly ordered DNA origami lattices at solid-liquid interfaces by controlling cation binding and exchange , 2020, Nano Research.

[15]  T. Liedl,et al.  Unraveling the interaction between doxorubicin and DNA origami nanostructures for customizable chemotherapeutic drug release , 2020, bioRxiv.

[16]  Baoquan Ding,et al.  Site‐Specific Synthesis of Silica Nanostructures on DNA Origami Templates , 2020, Advanced materials.

[17]  Arun Richard Chandrasekaran,et al.  Exceptional Nuclease Resistance of Paranemic Crossover (PX) DNA and Crossover-Dependent Biostability of DNA Motifs. , 2020, Journal of the American Chemical Society.

[18]  Serdal Kirmizialtin,et al.  Structure-guided DNA–DNA attraction mediated by divalent cations , 2020, bioRxiv.

[19]  Carlos E. Castro,et al.  Dynamic DNA nanotechnology: toward functional nanoscale devices , 2020, Nanoscale Horizons.

[20]  A. J. Markvoort,et al.  Counterion-Dependent Mechanisms of DNA Origami Nanostructure Stabilization Revealed by Atomistic Molecular Simulation , 2019, ACS nano.

[21]  Jens Müller Nucleic acid duplexes with metal-mediated base pairs and their structures , 2019, Coordination Chemistry Reviews.

[22]  Veikko Linko,et al.  Reconfigurable DNA Origami Nanocapsule for pH-Controlled Encapsulation and Display of Cargo , 2019, ACS nano.

[23]  Kurt V Gothelf,et al.  Chemistries for DNA Nanotechnology. , 2019, Chemical reviews.

[24]  Veikko Linko,et al.  Structural stability of DNA origami nanostructures under application-specific conditions , 2018, Computational and structural biotechnology journal.

[25]  Veikko Linko,et al.  Superstructure-Dependent Loading of DNA Origami Nanostructures with a Groove-Binding Drug , 2018, ACS omega.

[26]  Veikko Linko,et al.  On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers. , 2018, Angewandte Chemie.

[27]  Chengde Mao,et al.  Universal pH-Responsive and Metal-Ion-Free Self-Assembly of DNA Nanostructures. , 2018, Angewandte Chemie.

[28]  Baoquan Ding,et al.  A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo , 2018, Nature Biotechnology.

[29]  G. Grundmeier,et al.  Directed Protein Adsorption Through DNA Origami Masks. , 2018, Methods in molecular biology.

[30]  Hendrik Dietz,et al.  Gigadalton-scale shape-programmable DNA assemblies , 2017, Nature.

[31]  Arun Richard Chandrasekaran,et al.  Addressable configurations of DNA nanostructures for rewritable memory , 2017, Nucleic acids research.

[32]  Juewen Liu,et al.  Metal Sensing by DNA. , 2017, Chemical reviews.

[33]  Andrew D Ellington,et al.  Synthetic DNA Synthesis and Assembly: Putting the Synthetic in Synthetic Biology. , 2017, Cold Spring Harbor perspectives in biology.

[34]  Tim Liedl,et al.  Molecular force spectroscopy with a DNA origami–based nanoscopic force clamp , 2016, Science.

[35]  Arun Richard Chandrasekaran,et al.  Beyond the Fold: Emerging Biological Applications of DNA Origami , 2016, Chembiochem : a European journal of chemical biology.

[36]  A. Chandrasekaran,et al.  A ‘tile’ tale: Hierarchical self-assembly of DNA lattices , 2016 .

[37]  Sampo Tuukkanen,et al.  One-step large-scale deposition of salt-free DNA origami nanostructures , 2015, Scientific Reports.

[38]  Philip S. Lukeman,et al.  Crystal structure of a DNA/Ba2+ G-quadruplex containing a water-mediated C-tetrad , 2014, Nucleic acids research.

[39]  D. L. Morris,et al.  DNA-bound metal ions: recent developments , 2014, Biomolecular concepts.

[40]  P. Rothemund,et al.  Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion , 2014, Nature Communications.

[41]  Hendrik Dietz,et al.  Magnesium-free self-assembly of multi-layer DNA objects , 2012, Nature Communications.

[42]  James P. Hall,et al.  Structure determination of an intercalating ruthenium dipyridophenazine complex which kinks DNA by semiintercalation of a tetraazaphenanthrene ligand , 2011, Proceedings of the National Academy of Sciences.

[43]  N. Seeman,et al.  Crystalline two-dimensional DNA-origami arrays. , 2011, Angewandte Chemie.

[44]  Marc Gueroult,et al.  How Cations Can Assist DNase I in DNA Binding and Hydrolysis , 2010, PLoS Comput. Biol..

[45]  Cai Ma,et al.  Structural DNA Nanotechnology , 2010 .

[46]  Erik Winfree,et al.  Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. , 2010, Nature nanotechnology.

[47]  Atanu Basu,et al.  Icosahedral DNA nanocapsules by modular assembly. , 2009, Angewandte Chemie.

[48]  Philip S. Lukeman,et al.  Morphology change of calcium carbonate in the presence of polynucleotides , 2008 .

[49]  C. Mao,et al.  Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra , 2008, Nature.

[50]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[51]  Hao Yan,et al.  DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. , 2006, Angewandte Chemie.

[52]  Sebastian Doniach,et al.  Probing counterion modulated repulsion and attraction between nucleic acid duplexes in solution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  J. Cowan Structural and catalytic chemistry of magnesium-dependent enzymes , 2002, Biometals.

[54]  Zhuang Li,et al.  AFM studies of DNA structures on mica in the presence of alkaline earth metal ions. , 2003, Biophysical chemistry.

[55]  J. Reif,et al.  Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes , 2000 .

[56]  N. Seeman,et al.  DNA double-crossover molecules. , 1993, Biochemistry.

[57]  D. Lilley,et al.  The anomalous gel migration of a stable cruciform: temperature and salt dependence, and some comparisons with curved DNA. , 1987, Nucleic acids research.

[58]  D. Jackson,et al.  The effect of divalent cations on the mode of action of DNase I. The initial reaction products produced from covalently closed circular DNA. , 1980, Journal of Biological Chemistry.

[59]  E. Melgar,et al.  Deoxyribonucleic acid nucleases. II. The effects of metals on the mechanism of action of deoxyribonuclease I. , 1968, The Journal of biological chemistry.