Restriction-site associated DNA markers provide new insights into the evolutionary history of the bark beetle genus Dendroctonus.

[1]  A. Cognato,et al.  New Molecular Tools for Dendroctonus frontalis (Coleoptera: Curculionidae: Scolytinae) Reveal an East–West Genetic Subdivision of Early Pleistocene Origin , 2019, Insect Systematics and Diversity.

[2]  M. Báez,et al.  Genus delimitation, biogeography and diversification of Choristoneura Lederer (Lepidoptera: Tortricidae) based on molecular evidence , 2018, Systematic Entomology.

[3]  J. Gohli,et al.  Molecular phylogeny of bark and ambrosia beetles (Curculionidae: Scolytinae) based on 18 molecular markers , 2018 .

[4]  B. Danforth,et al.  Phylogeny, new generic-level classification, and historical biogeography of the Eucera complex (Hymenoptera: Apidae). , 2018, Molecular phylogenetics and evolution.

[5]  M. Prebus Insights into the evolution, biogeography and natural history of the acorn ants, genus Temnothorax Mayr (hymenoptera: Formicidae) , 2017, BMC Evolutionary Biology.

[6]  I. Yao,et al.  Multiple trans-Beringia dispersals of the barklouse genus Trichadenotecnum (Insecta: Psocodea: Psocidae) , 2017 .

[7]  P. Peres‐Neto,et al.  Combining phylogeny and co‐occurrence to improve single species distribution models , 2017 .

[8]  J. Rasplus,et al.  Is phylogeography helpful for invasive species risk assessment? The case study of the bark beetle genus Dendroctonus , 2016 .

[9]  Liyun Jiang,et al.  An aphid lineage maintains a bark‐feeding niche while switching to and diversifying on conifers , 2016, Cladistics : the international journal of the Willi Hennig Society.

[10]  J. Wen,et al.  Intercontinental disjunctions between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to Neogene , 2016 .

[11]  Jérôme Gouzy,et al.  RADIS: analysis of RAD-seq data for interspecific phylogeny , 2016, Bioinform..

[12]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[13]  G. Zúñiga,et al.  Phylogeny of Dendroctonus bark beetles (Coleoptera: Curculionidae: Scolytinae) inferred from morphological and molecular data , 2016 .

[14]  G. Genson,et al.  Unravelling the historical biogeography and diversification dynamics of a highly diverse conifer‐feeding aphid genus , 2015 .

[15]  F. Armendáriz-Toledano,et al.  A New Species of Bark Beetle, Dendroctonus mesoamericanus sp. nov. (Curculionidae: Scolytinae), in Southern Mexico and Central America , 2015 .

[16]  R. Bouckaert,et al.  Species Delimitation using Genome-Wide SNP Data , 2013, bioRxiv.

[17]  Astrid Cruaud,et al.  Empirical assessment of RAD sequencing for interspecific phylogeny. , 2014, Molecular biology and evolution.

[18]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[19]  Aaron S. Weed,et al.  Consequences of climate change for biotic disturbances in North American forests , 2013 .

[20]  F. Chevenet,et al.  Is ecological speciation a major trend in aphids? Insights from a molecular phylogeny of the conifer-feeding genus Cinara , 2013, Frontiers in Zoology.

[21]  A. Meyer,et al.  The evolutionary history of Xiphophorus fish and their sexually selected sword: a genome‐wide approach using restriction site‐associated DNA sequencing , 2013, Molecular ecology.

[22]  Angel Amores,et al.  Stacks: an analysis tool set for population genomics , 2013, Molecular ecology.

[23]  J. Olden,et al.  Using avatar species to model the potential distribution of emerging invaders , 2012 .

[24]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[25]  S. Kelley,et al.  Ancestral State Reconstruction for Dendroctonus Bark Beetles: Evolution of a Tree Killer , 2012, Environmental entomology.

[26]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[27]  A. Amores,et al.  Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences , 2011, G3: Genes | Genomes | Genetics.

[28]  A. Cognato,et al.  The age and phylogeny of wood boring weevils and the origin of subsociality. , 2011, Molecular phylogenetics and evolution.

[29]  D. Coltman,et al.  Mountain pine beetle host-range expansion threatens the boreal forest , 2011, Molecular ecology.

[30]  P. Etter,et al.  Local De Novo Assembly of RAD Paired-End Contigs Using Short Sequencing Reads , 2011, PloS one.

[31]  F. Forest,et al.  An evaluation of new parsimony‐based versus parametric inference methods in biogeography: a case study using the globally distributed plant family Sapindaceae , 2011 .

[32]  Kurt E. Johnson,et al.  Phylogeny and palaeoecology of Polyommatus blue butterflies show Beringia was a climate-regulated gateway to the New World , 2011, Proceedings of the Royal Society B: Biological Sciences.

[33]  Mark A. Miller,et al.  Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).

[34]  J. Régnière,et al.  Climate Change and Bark Beetles of the Western United States and Canada: Direct and Indirect Effects , 2010 .

[35]  G. Jansen,et al.  Phylogeny, divergence-time estimation, biogeography and social parasite-host relationships of the Holarctic ant genus Myrmica (Hymenoptera: Formicidae). , 2010, Molecular phylogenetics and evolution.

[36]  A. Vogler,et al.  Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. , 2010, Molecular biology and evolution.

[37]  Stephen A. Smith Taking into account phylogenetic and divergence‐time uncertainty in a parametric biogeographical analysis of the Northern Hemisphere plant clade Caprifolieae , 2009 .

[38]  Gary Langham,et al.  Towards an Integrated Framework for Assessing the Vulnerability of Species to Climate Change , 2008, PLoS biology.

[39]  P. Etter,et al.  Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers , 2008, PloS one.

[40]  Yan Cai,et al.  Genetic diversity and biogeography of red turpentine beetle Dendroctonus valens in its native and invasive regions , 2008 .

[41]  H. Hines Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus). , 2008, Systematic biology.

[42]  Richard H. Ree,et al.  Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. , 2008, Systematic biology.

[43]  G. Kergoat,et al.  Defining the limits of taxonomic conservatism in host-plant use for phytophagous insects: molecular systematics and evolution of host-plant associations in the seed-beetle genus Bruchus Linnaeus (Coleoptera: Chrysomelidae: Bruchinae). , 2007, Molecular phylogenetics and evolution.

[44]  R. Milne Northern Hemisphere plant disjunctions: a window on tertiary land bridges and climate change? , 2006 .

[45]  Campbell O. Webb,et al.  A LIKELIHOOD FRAMEWORK FOR INFERRING THE EVOLUTION OF GEOGRAPHIC RANGE ON PHYLOGENETIC TREES , 2005, Evolution; international journal of organic evolution.

[46]  Zhongning Zhang,et al.  The red turpentine beetle, Dendroctonus valens LeConte (Scolytidae): an exotic invasive pest of pine in China , 2005, Biodiversity & Conservation.

[47]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[48]  A. Oleinik,et al.  A refined age for the earliest opening of Bering Strait , 2002 .

[49]  J. L. Hayes,et al.  Karyology, Geographic Distribution, and Origin of the Genus Dendroctonus Erichson (Coleoptera: Scolytidae) , 2002 .

[50]  Brian D. Farrell,et al.  Evolutionary origins of Gondwanan interactions: How old are Araucaria beetle herbivores? , 2001 .

[51]  B. LePage,et al.  A Dendroctonus bark engraving (Coleoptera: Scolytidae) from a middle Eocene Larix (Coniferales: Pinaceae): early or delayed colonization? , 2001, American journal of botany.

[52]  Fredrik Ronquist,et al.  Patterns of animal dispersal, vicariance and diversification in the Holarctic , 2001 .

[53]  Brian D. Farrell,et al.  IS SPECIALIZATION A DEAD END? THE PHYLOGENY OF HOST USE IN DENDROCTONUS BARK BEETLES (SCOLYTIDAE) , 1998, Evolution; international journal of organic evolution.

[54]  Michael J. Sanderson,et al.  A Nonparametric Approach to Estimating Divergence Times in the Absence of Rate Constancy , 1997 .

[55]  M. Furniss Taxonomic Status of Dendroctonus punctatus and D. micans (Coleoptera: Scolytidae) , 1996 .

[56]  B. Crespi,et al.  Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers , 1994 .

[57]  J. A. Wolfe An analysis of Neogene climates in Beringia , 1994 .

[58]  B. Bentz,et al.  Phenetic and Phylogenetic Relationships among Ten Species of Dendroctonus Bark Beetles (Coleoptera: Scolytidae) , 1986 .

[59]  Matthew A. Kaproth,et al.  Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. , 2018, The New phytologist.

[60]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[61]  V. Mosbrugger,et al.  Climate impact of high northern vegetation: Late Miocene and present , 2011, International Journal of Earth Sciences.

[62]  D. Six,et al.  Dendroctonus bark beetles as model systems for studies on symbiosis , 2004 .

[63]  M. Sanderson Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. , 2002, Molecular biology and evolution.

[64]  T. Ebata,et al.  Field guide to forest damage in British Columbia. , 1999 .

[65]  D. Tovar Insectos forestales de México , 1995 .

[66]  B. Tiffney The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the northern hemisphere , 1985 .

[67]  S. Wood The Bark and Ambrosia Beetles of North and Central America (Coleoptera: Scolytidae), a Taxonomic Monograph , 1982 .

[68]  W. L. Baker Eastern forest insects , 1972 .

[69]  S. L. Wood,et al.  A revision of the bark beetle genus Dendroctonus Erichson (Coleoptera: Scolytidae) , 1963 .