Guest Editorial Advances in Quantum Communications, Computing, Cryptography, and Sensing

Seven decades after the foundation of classical information theory and the invention of the transistor that launched the digital communication and computing revolutions, we are entering a new era of quantum information science and engineering (QISE). Despite holding its impressive sway for nearly 60 years, the celebrated Moore’s law is beginning to hit physical limits, as the ever-shrinking transistor size is making it necessary to account for quantum effects. Concurrently, the growing demand for high-rate processing is imposing unsustainable power and heat dissipation requirements. Thus, there is an urgent need to develop quantum information processing systems that can circumvent the limitations of existing technology.

[1]  Martin Rötteler,et al.  General Scheme for Perfect Quantum Network Coding with Free Classical Communication , 2009, ICALP.

[2]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[3]  Robert Malaney,et al.  Gaussian entanglement distribution via satellite , 2014, 1410.1319.

[4]  Liuguo Yin,et al.  Measurement-device-independent quantum communication without encryption. , 2018, Science bulletin.

[5]  Lajos Hanzo,et al.  Towards the Quantum Internet: Generalised Quantum Network Coding for Large-Scale Quantum Communication Networks , 2017, IEEE Access.

[6]  Robert A. Malaney,et al.  Quantum key distribution over combined atmospheric fading channels , 2014, 2015 IEEE International Conference on Communications (ICC).

[7]  Lajos Hanzo,et al.  Satellite-Based Continuous-Variable Quantum Communications: State-of-the-Art and a Predictive Outlook , 2017, IEEE Communications Surveys & Tutorials.

[8]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[9]  Martin Rötteler,et al.  Constructing quantum network coding schemes from classical nonlinear protocols , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[10]  H. Weinfurter,et al.  Air-to-ground quantum communication , 2013, Nature Photonics.

[11]  David Edward Bruschi,et al.  Spacetime effects on satellite-based quantum communications , 2013, 1309.3088.

[12]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[13]  Lajos Hanzo,et al.  Near-Hashing-Bound Multiple-Rate Quantum Turbo Short-Block Codes , 2019, IEEE Access.

[14]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[15]  W. Munro,et al.  From quantum multiplexing to high-performance quantum networking , 2010 .

[16]  Robert Malaney,et al.  Entanglement generation via non-Gaussian transfer over atmospheric fading channels , 2015, 1510.05738.

[17]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[18]  Hiroshi Imai,et al.  Quantum network coding for quantum repeaters , 2012, 1205.3745.

[19]  Gang Xu,et al.  Perfect Quantum Network Coding Independent of Classical Network Solutions , 2015, IEEE Communications Letters.

[20]  Jianwei Liu,et al.  Quantum Network Coding Based on Controlled Teleportation , 2014, IEEE Communications Letters.

[21]  G. Popkin Quest for qubits. , 2016, Science.

[22]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[23]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[24]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[25]  M. Win,et al.  Adaptive recurrence quantum entanglement distillation for two-Kraus-operator channels , 2017, Physical Review A.

[26]  Lajos Hanzo,et al.  When Entanglement Meets Classical Communications: Quantum Teleportation for the Quantum Internet , 2019, IEEE Transactions on Communications.

[27]  Rodney Van Meter,et al.  Analysis of quantum network coding for realistic repeater networks , 2015, 1508.02141.

[28]  Martin Rötteler,et al.  Perfect quantum network communication protocol based on classical network coding , 2009, 2010 IEEE International Symposium on Information Theory.

[29]  Debbie W. Leung,et al.  Quantum Network Communication—The Butterfly and Beyond , 2010, IEEE Transactions on Information Theory.

[30]  Jian-Wei Pan,et al.  Ground-to-satellite quantum teleportation , 2017, Nature.

[31]  Chao Zheng,et al.  Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs , 2014 .

[32]  Lajos Hanzo,et al.  Duality of Quantum and Classical Error Correction Codes: Design Principles and Examples , 2019, IEEE Communications Surveys & Tutorials.

[33]  Masahito Hayashi,et al.  Quantum Network Coding , 2006, STACS.

[34]  Lajos Hanzo,et al.  Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective , 2018, IEEE Access.

[35]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[36]  Lajos Hanzo,et al.  Quantum Topological Error Correction Codes are Capable of Improving the Performance of Clifford Gates , 2019, IEEE Access.

[37]  Robert A. Malaney,et al.  CV-QKD with Gaussian and Non-Gaussian Entangled States over Satellite-Based Channels , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[38]  Masahito Hayashi,et al.  Prior entanglement between senders enables perfect quantum network coding with modification , 2007, 0706.0197.

[39]  Andrea Conti,et al.  Quantum Pulse Position Modulation with Photon-Added Coherent States , 2019, 2019 IEEE Globecom Workshops (GC Wkshps).

[40]  Robert A. Malaney,et al.  CV-MDI quantum key distribution via satellite , 2016, Quantum Inf. Comput..

[41]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[42]  M. Mahdian,et al.  Perfect K-Pair Quantum Network Coding Using Superconducting Qubits , 2015 .

[43]  Alexander Ling,et al.  Progress in satellite quantum key distribution , 2017, 1707.03613.

[44]  L. Zhang,et al.  Direct and full-scale experimental verifications towards ground–satellite quantum key distribution , 2012, 1210.7556.

[45]  Marco Chiani,et al.  Secure Key Throughput of Intermittent Trusted-Relay QKD Protocols , 2018, 2018 IEEE Globecom Workshops (GC Wkshps).

[46]  Moe Z. Win,et al.  Channel-Adapted Quantum Error Correction for the Amplitude Damping Channel , 2007, IEEE Transactions on Information Theory.

[47]  Miles Cranmer,et al.  Free-space quantum key distribution to a moving receiver. , 2015, Optics express.