A Calderon regularized symmetric formulation for the electroencephalography forward problem

Abstract The symmetric formulation of the electroencephalography (EEG) forward problem is a well-known and widespread equation thanks to the high level of accuracy that it delivers. However, this equation is first kind in nature and gives rise to ill-conditioned problems when the discretization density or the brain conductivity contrast increases, resulting in numerical instabilities and increasingly slow solutions. This work addresses and solves this problem by proposing a new regularized symmetric formulation. The new scheme is obtained by leveraging on Calderon identities which allow to introduce a dual symmetric equation that, combined with the standard one, results in a second kind operator which is both stable and well-conditioned under all the above mentioned conditions. The new formulation presented here can be easily integrated into existing EEG imaging packages since it can be obtained with the same computational technology required by the standard symmetric formulation. The performance of the new scheme is substantiated by both theoretical developments and numerical results which corroborate the theory and show the practical impact of the new technique.

[1]  Richard M. Leahy,et al.  MEG-based imaging of focal neuronal current sources , 1995, 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record.

[2]  Théodore Papadopoulo,et al.  OpenMEEG: opensource software for quasistatic bioelectromagnetics , 2010, Biomedical engineering online.

[3]  J. D. Munck The potential distribution in a layered anisotropic spheroidal volume conductor , 1988 .

[4]  M. Fuchs,et al.  Boundary element method volume conductor models for EEG source reconstruction , 2001, Clinical Neurophysiology.

[5]  Christoph M. Michel,et al.  Towards the utilization of EEG as a brain imaging tool , 2012, NeuroImage.

[6]  William Elison,et al.  Line , 2017, The Craft of Poetry.

[7]  Ignace Bogaert,et al.  On a Well-Conditioned Electric Field Integral Operator for Multiply Connected Geometries , 2013, IEEE Transactions on Antennas and Propagation.

[8]  Johan H. M. Frijns,et al.  Improving the accuracy of the boundary element method by the use of second-order interpolation functions [EEG modeling application] , 2000, IEEE Transactions on Biomedical Engineering.

[10]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[11]  Seppo P. Ahlfors,et al.  Sensitivity of MEG and EEG to Source Orientation , 2010, Brain Topography.

[12]  Hendrik Rogier,et al.  A Calderón Preconditioner for High Dielectric Contrast Media , 2018, IEEE Transactions on Antennas and Propagation.

[13]  E. Michielssen,et al.  High-order Div- and Quasi Curl-Conforming Basis Functions for Calderón Multiplicative Preconditioning of the EFIE , 2011, IEEE Transactions on Antennas and Propagation.

[14]  Jin-Fa Lee,et al.  Preconditioned Electric Field Integral Equation Using Calderon Identities and Dual Loop/Star Basis Functions , 2009, IEEE Transactions on Antennas and Propagation.

[15]  Matti S. Hämäläinen,et al.  EEG functional connectivity is partially predicted by underlying white matter connectivity , 2015, NeuroImage.

[16]  Israel Gohberg,et al.  Basic Classes of Linear Operators , 2004 .

[17]  Snorre H. Christiansen,et al.  A dual finite element complex on the barycentric refinement , 2005, Math. Comput..

[18]  Simon K. Warfield,et al.  EEG source analysis of epileptiform activity using a 1 mm anisotropic hexahedra finite element head model , 2009, NeuroImage.

[19]  D. Tucker,et al.  EEG source localization: Sensor density and head surface coverage , 2015, Journal of Neuroscience Methods.

[20]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[21]  Simon K. Warfield,et al.  Cortical Graph Smoothing: A Novel Method for Exploiting DWI-Derived Anatomical Brain Connectivity to Improve EEG Source Estimation , 2013, IEEE Transactions on Medical Imaging.

[22]  Andreas Galka,et al.  Combining EEG and MEG for the Reconstruction of Epileptic Activity Using a Calibrated Realistic Volume Conductor Model , 2014, PloS one.

[23]  Francesco P. Andriulli,et al.  On the preconditioning of the symmetric formulation for the EEG forward problem by leveraging on calderon formulas , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).

[24]  Ralf Hiptmair,et al.  Operator Preconditioning , 2006, Comput. Math. Appl..

[25]  B. Dembart,et al.  Well-conditioned boundary integral equations for three-dimensional electromagnetic scattering , 2002 .

[26]  M. Gavaret,et al.  High-resolution EEG (HR-EEG) and magnetoencephalography (MEG) , 2015, Neurophysiologie Clinique/Clinical Neurophysiology.

[27]  O. Axelsson Iterative solution methods , 1995 .

[28]  B.N. Cuffin,et al.  EEG localization accuracy improvements using realistically shaped head models , 1996, IEEE Transactions on Biomedical Engineering.

[29]  M. Vouvakis,et al.  The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems , 2005, IEEE Transactions on Electromagnetic Compatibility.

[30]  Manfred Fuchs,et al.  Numerical aspects of spatio-temporal current density reconstruction from EEG-/MEG-data , 2001, IEEE Transactions on Medical Imaging.

[31]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[32]  M. Hämäläinen,et al.  Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data , 1989, IEEE Transactions on Biomedical Engineering.

[33]  W. Drongelen,et al.  Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings , 2005, Clinical Neurophysiology.

[34]  Olivier D. Faugeras,et al.  A common formalism for the Integral formulations of the forward EEG problem , 2005, IEEE Transactions on Medical Imaging.

[35]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[36]  Richard M. Leahy,et al.  Brainstorm: A User-Friendly Application for MEG/EEG Analysis , 2011, Comput. Intell. Neurosci..

[37]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[38]  J. Haueisen,et al.  Role of Soft Bone, CSF and Gray Matter in EEG Simulations , 2003, Brain Topography.

[39]  Kensuke Sekihara,et al.  MEG/EEG Source Reconstruction, Statistical Evaluation, and Visualization with NUTMEG , 2011, Comput. Intell. Neurosci..

[40]  H. Rogier,et al.  A Calderón multiplicative preconditioner for the electromagnetic Poincaré-Steklov operator of a heterogeneous domain with scattering applications , 2015, J. Comput. Phys..

[41]  Viktor K. Jirsa,et al.  Spatiotemporal forward solution of the EEG and MEG using network modeling , 2002, IEEE Transactions on Medical Imaging.

[42]  E. Michielssen,et al.  A Calderón Multiplicative Preconditioner for the PMCHWT Integral Equation , 2011, IEEE Transactions on Antennas and Propagation.

[43]  J. Sarvas Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. , 1987, Physics in medicine and biology.

[44]  Leonid Zhukov,et al.  Lead-field Bases for Electroencephalography Source Imaging , 2000, Annals of Biomedical Engineering.

[45]  Bart Vanrumste,et al.  Journal of Neuroengineering and Rehabilitation Open Access Review on Solving the Inverse Problem in Eeg Source Analysis , 2022 .

[46]  Moritz Dannhauer,et al.  Modeling of the human skull in EEG source analysis , 2011, Human brain mapping.

[47]  Thomas R. Knösche,et al.  Influence of the head model on EEG and MEG source connectivity analyses , 2015, NeuroImage.

[48]  Snorre H. Christiansen,et al.  A Preconditioner for the Electric Field Integral Equation Based on Calderon Formulas , 2002, SIAM J. Numer. Anal..

[49]  S. Makeig,et al.  Improved EEG source analysis using low‐resolution conductivity estimation in a four‐compartment finite element head model , 2009, Human brain mapping.

[50]  Kazuki Niino,et al.  Calderón preconditioning approaches for PMCHWT formulations for Maxwell's equations , 2012 .

[51]  Hans Hallez,et al.  Influence of Skull Modeling Approaches on EEG Source Localization , 2013, Brain Topography.

[52]  Fabrizio Esposito,et al.  Realistic and Spherical Head Modeling for EEG Forward Problem Solution: A Comparative Cortex-Based Analysis , 2010, Comput. Intell. Neurosci..

[53]  Charalambos D. Aliprantis,et al.  An invitation to operator theory , 2002 .

[54]  Thomas R. Knösche,et al.  A guideline for head volume conductor modeling in EEG and MEG , 2014, NeuroImage.

[55]  M. Fuchs,et al.  An improved boundary element method for realistic volume-conductor modeling , 1998, IEEE Transactions on Biomedical Engineering.

[56]  W. van Drongelen,et al.  Estimation of in vivo brain-to-skull conductivity ratio in humans. , 2006, Applied physics letters.

[57]  Sylvain Baillet,et al.  Influence of skull anisotropy for the forward and inverse problem in EEG: Simulation studies using FEM on realistic head models , 1998, Human brain mapping.

[58]  J. Haueisen,et al.  Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head , 1997, IEEE Transactions on Biomedical Engineering.

[59]  N. Champagne,et al.  A numerical implementation of a modified form of the electric field Integral equation , 2004, IEEE Transactions on Antennas and Propagation.

[60]  Olivier Faugeras,et al.  Fast multipole acceleration of the MEG/EEG boundary element method , 2005, Physics in medicine and biology.

[61]  C. E. Acar,et al.  Sensitivity of EEG and MEG measurements to tissue conductivity , 2004, Physics in medicine and biology.

[63]  S. Makeig,et al.  Effects of Forward Model Errors on EEG Source Localization , 2013, Brain Topography.

[64]  E. Michielssen,et al.  A Multiplicative Calderon Preconditioner for the Electric Field Integral Equation , 2008, IEEE Transactions on Antennas and Propagation.

[65]  Xavier Tricoche,et al.  Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling , 2006, NeuroImage.

[66]  R. Oostenveld,et al.  Validating the boundary element method for forward and inverse EEG computations in the presence of a hole in the skull , 2002, Human brain mapping.

[67]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[68]  Bart Vanrumste,et al.  Review on solving the forward problem in EEG source analysis , 2007, Journal of NeuroEngineering and Rehabilitation.

[69]  J. Pernier,et al.  A systematic evaluation of the spherical model accuracy in EEG dipole localization. , 1997, Electroencephalography and clinical neurophysiology.

[70]  Z. Zhang,et al.  A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres. , 1995, Physics in medicine and biology.

[71]  Jens Haueisen,et al.  Comparison of three-shell and simplified volume conductor models in magnetoencephalography , 2014, NeuroImage.

[72]  M. Cook,et al.  EEG source localization in focal epilepsy: Where are we now? , 2008, Epilepsia.

[73]  M. Clerc,et al.  Comparison of Boundary Element and Finite Element Approaches to the EEG Forward Problem , 2012, Biomedizinische Technik. Biomedical engineering.

[74]  Carsten H. Wolters,et al.  A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation , 2009, NeuroImage.