A G ] 1 0 A pr 2 01 4 Derived Algebraic Geometry and Deformation Quantization

This is a report on recent progress concerning the interactions between derived algebraic geometry and deformation quantization. We present the notion of derived algebraic stacks, of shifted symplectic and Poisson structures, as well as the construction of deformation quantization of shifted Poisson structures. As an application we propose a general construction of the quantization of the moduli space of G-bundles on an oriented space of arbitrary dimension.

[1]  Bertrand Toen,et al.  Derived Algebraic Geometry , 2014, 1401.1044.

[2]  A. Blanc Invariants topologiques des espaces non-commutatifs. , 2013, 1307.6430.

[3]  R. Pandharipande,et al.  ALMOST CLOSED 1-FORMS , 2012, Glasgow Mathematical Journal.

[4]  B. Toën Derived Azumaya algebras and generators for twisted derived categories , 2012, Inventiones mathematicae.

[5]  J. Francis The tangent complex and Hochschild cohomology of $\mathcal {E}_n$-rings , 2011, Compositio Mathematica.

[6]  Anatoly Preygel Thom-Sebastiani and duality for matrix factorizations, and results on the higher structures of the Hochschild invariants , 2012 .

[7]  B. Toën,et al.  Shifted symplectic structures , 2011, 1111.3209.

[8]  Gonçalo Tabuada A Guided Tour Through the Garden of Noncommutative Motives , 2011, 1108.3787.

[9]  J. Lurie Moduli Problems for Ring Spectra , 2011 .

[10]  J. Pridham Representability of derived stacks , 2010 .

[11]  A. Kapustin Topological Field Theory, Higher Categories, and Their Applications , 2010, 1004.2307.

[12]  M. Kontsevich,et al.  Motivic Donaldson-Thomas invariants: Summary of results , 2009, 0910.4315.

[13]  B. Keller,et al.  On Hochschild Cohomology and Morita Deformations , 2009 .

[14]  B. Toen Higher and derived stacks: a global overview , 2006, math/0604504.

[15]  Bernhard Keller,et al.  On differential graded categories , 2006, math/0601185.

[16]  B. Toën,et al.  Moduli of objects in dg-categories , 2005, math/0503269.

[17]  Goncalo Tabuada Algèbre homologique Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories , 2004, math/0407338.

[18]  G. Vezzosi,et al.  Homotopical Algebraic Geometry II: Geometric Stacks and Applications , 2004, math/0404373.

[19]  Bertrand Toen,et al.  Homotopical algebraic geometry. I. Topos theory. , 2002, math/0207028.

[20]  C. Simpson Algebraic aspects of higher nonabelian Hodge theory , 1999, math/9902067.

[21]  M. Kontsevich Enumeration of Rational Curves Via Torus Actions , 1994, hep-th/9405035.

[22]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[23]  V. Turaev Skein quantization of Poisson algebras of loops on surfaces , 1991 .

[24]  M. Artin,et al.  Versal deformations and algebraic stacks , 1974 .