A synthesis system for analog circuits based on evolutionary search and topological reuse

We present a method for automated synthesis of analog circuits using evolutionary search and a set of circuit design rules based on topological reuse. The system requires only moderate expert knowledge on part of the user. It allows circuit size, circuit topology, and device values to evolve. The circuit representation scheme employs a topological reuse-based approach-it uses commonly used subcircuits for analog design as inputs and utilizes these to create the final circuit. The connectivity between these blocks is governed by a well-defined set of rules and the scheme is capable of representing most standard analog circuit topologies. The system operation consists of two phases-in the first phase, the circuit size and topology are evolved. A limited amount of device sizing also occurs in this phase. The second phase consists entirely of device value optimization. The design of the evaluation function-which evaluates each generated circuit using SPICE simulations-has also been automated to a great extent. The evaluation function is generated automatically depending on a behavioral description of the circuit. We present several experimental results obtained using this scheme, including two types of comparators, two types of oscillators, and an XOR logic gate. The generated circuits closely resemble hand designed circuits. The computational needs of the system are modest.

[1]  Fathey M. El-Turky,et al.  BLADES: an artificial intelligence approach to analog circuit design , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[2]  P.R. Gray,et al.  OPASYN: a compiler for CMOS operational amplifiers , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  Rob A. Rutenbar,et al.  Integer programming based topology selection of cell-level analog circuits , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[4]  Mike Davis,et al.  VLSI circuit synthesis using a parallel genetic algorithm , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[5]  Domine Leenaerts,et al.  DARWIN: CMOS opamp Synthesis by Means of a Genetic Algorithm , 1995, 32nd Design Automation Conference.

[6]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[7]  Georges Gielen,et al.  Analog Circuit Design Optimization based on Symbolic Simulation and Simulated Annealing , 1989 .

[8]  Phillip E Allen,et al.  CMOS Analog Circuit Design , 1987 .

[9]  Christofer Toumazou,et al.  The invention of CMOS amplifiers using genetic programming and current-flow analysis , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  Bozena Kaminska,et al.  FPAD: a fuzzy nonlinear programming approach to analog circuit design , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[11]  Alberto L. Sangiovanni-Vincentelli,et al.  DELIGHT.SPICE: an optimization-based system for the design of integrated circuits , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[12]  Rob A. Rutenbar,et al.  Synthesis of high-performance analog circuits in ASTRX/OBLX , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[13]  Georges Gielen,et al.  ISAAC: a symbolic simulator for analog integrated circuits , 1989, IEEE J. Solid State Circuits.

[14]  Georges G. E. Gielen,et al.  AMGIE-A synthesis environment for CMOS analog integrated circuits , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[15]  M. M. Hasan,et al.  An expert system approach to analog circuit synthesis , 1997, Proceedings Tenth International Conference on VLSI Design.

[16]  Antonio Torralba,et al.  FASY: a fuzzy-logic based tool for analog synthesis , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[17]  Jason D. Lohn,et al.  Automated Analog Circuit Sythesis Using a Linear Representation , 1998, ICES.

[18]  Rob A. Rutenbar,et al.  Anaconda: simulation-based synthesis of analog circuits viastochastic pattern search , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[19]  Rob A. Rutenbar,et al.  OASYS: a framework for analog circuit synthesis , 1989, Proceedings., Second Annual IEEE ASIC Seminar and Exhibit,.

[20]  John R. Koza,et al.  Automated synthesis of analog electrical circuits by means of genetic programming , 1997, IEEE Trans. Evol. Comput..

[21]  Günhan Dündar,et al.  An evolutionary approach to automatic synthesis of high-performance analog integrated circuits , 2003, IEEE Trans. Evol. Comput..

[22]  Yun Li,et al.  GA automated design and synthesis of analog circuits with practical constraints , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[23]  Georges G. E. Gielen,et al.  A flexible topology selection program as part of an analog synthesis system , 1995, Proceedings the European Design and Test Conference. ED&TC 1995.

[24]  Qicheng Yu,et al.  A unified approach to the approximate symbolic analysis of large analog integrated circuits , 1996 .

[25]  Lawrence T. Pileggi,et al.  Asymptotic waveform evaluation for timing analysis , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[26]  J. B. Grimbleby,et al.  Automatic analogue circuit synthesis using genetic algorithms , 2000 .

[27]  Ranga Vemuri,et al.  A genetic approach to simultaneous parameter space exploration and constraint transformation in analog synthesis , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[28]  Christofer Toumazou,et al.  Analog IC design automation. I. Automated circuit generation: new concepts and methods , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[29]  Rob A. Rutenbar,et al.  STAIC: An Interactive Framework for Synthesizing CMOS and BiCMOS Analog Circuits , 2002 .

[30]  Darrell Whitley,et al.  A genetic algorithm tutorial , 1994, Statistics and Computing.

[31]  Christofer Toumazou,et al.  Analog IC design automation. II. Automated circuit correction by qualitative reasoning , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[32]  柴田 肇 Computer-aided design of analog circuits based on genetic algorithm , 2002 .

[33]  Jason D. Lohn,et al.  A circuit representation technique for automated circuit design , 1999, IEEE Trans. Evol. Comput..