Flexible Controls of Terahertz Waves Using Coding and Programmable Metasurfaces

In the first part of the paper, we make a brief review on the coding and programmable metasurfaces recently proposed at microwave and terahertz frequencies, which are realized by distributing coding particles “0” and “1” with opposite reflection phases on surfaces with certain coding sequences. The powerful manipulations to microwaves and terahertz waves using the coding and programmable metasurfaces are presented. In the second part of the paper, we propose a new coding scheme for the generation of ring-shaped radiation pattern. Different coding strategies are provided to demonstrate the flexible controls of the size, position, and number of rings in the radiation patterns, including changing the periodicity of the gradient coding sequence and adding it with one or multiple periodic sequences. A new structure featuring low electromagnetic interference and ultrahigh efficiency is designed to implement the ring-shaped pattern, which shows highly consistent results to the theoretical results calculated by Fourier transform. We remark that such a ring-shaped radiation pattern may find a wide range of applications in radar detections.

[1]  Zhaoyang Fan,et al.  Structural, electrical, and terahertz transmission properties of VO2 thin films grown on c-, r-, and m-plane sapphire substrates , 2012 .

[2]  Quan Xue,et al.  Ka-Band Omnidirectional High Gain Stacked Dual Bicone Antenna , 2016, IEEE Transactions on Antennas and Propagation.

[3]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[4]  Qiang Cheng,et al.  Coding metamaterials, digital metamaterials and programmable metamaterials , 2014, Light: Science & Applications.

[5]  Martin Wegener,et al.  Tailored 3D Mechanical Metamaterials Made by Dip‐in Direct‐Laser‐Writing Optical Lithography , 2012, Advanced materials.

[6]  Sanjay Krishna,et al.  Four‐Color Metamaterial Absorber THz Spatial Light Modulator , 2013 .

[7]  Chih-Ming Wang,et al.  Aluminum plasmonic multicolor meta-hologram. , 2015, Nano letters.

[8]  Shuo Liu,et al.  Information entropy of coding metasurface , 2016, Light: Science & Applications.

[9]  Houtong Chen,et al.  Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials , 2015 .

[10]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[11]  D. Smith,et al.  Characterization of a planar artificial magnetic metamaterial surface. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[13]  Yan Zhang,et al.  Spatial Terahertz Modulator , 2013, Scientific Reports.

[14]  Willie J Padilla,et al.  Liquid Crystal Metamaterial Absorber Spatial Light Modulator for THz Applications , 2014 .

[15]  David R. Smith,et al.  Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Igal Brener,et al.  Micrometer‐Scale Cubic Unit Cell 3D Metamaterial Layers , 2010, Advanced materials.

[17]  Andrea Alù,et al.  Frozen light in a near-zero index metasurface , 2014 .

[18]  D. Tsai,et al.  Directed subwavelength imaging using a layered metal-dielectric system , 2006, physics/0608170.

[19]  Tie Jun Cui,et al.  Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface. , 2014, Optics express.

[20]  Wai Lam Chan,et al.  A spatial light modulator for terahertz beams , 2009 .

[21]  Qiang Cheng,et al.  Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials. , 2012, Physical review letters.

[22]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[23]  Qiang Cheng,et al.  Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves , 2016, Light: Science & Applications.

[24]  Tian Yi Chen,et al.  Field-programmable beam reconfiguring based on digitally-controlled coding metasurface , 2016, Scientific Reports.

[25]  C. Holloway,et al.  A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials , 2009 .

[26]  P. Mounaix,et al.  Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications. , 2013, Optics letters.

[27]  Zhenghe Feng,et al.  Periodic Leaky-Wave Antenna Array With Horizontally Polarized Omnidirectional Pattern , 2012, IEEE Transactions on Antennas and Propagation.

[28]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[29]  Reinier W Heeres,et al.  Subwavelength focusing of light with orbital angular momentum. , 2014, Nano letters.

[30]  Gabriel M. Rebeiz,et al.  Double-slot antennas on extended hemispherical dielectric lenses , 1992 .

[31]  R. Greegor,et al.  Experimental verification and simulation of negative index of refraction using Snell's law. , 2003, Physical review letters.

[32]  Federico Capasso,et al.  Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. , 2012, Nano letters.

[33]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[34]  Sean Victor Hum,et al.  Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review , 2013, IEEE Transactions on Antennas and Propagation.

[35]  Qiang Cheng,et al.  Broadband diffusion of terahertz waves by multi-bit coding metasurfaces , 2015, Light: Science & Applications.

[36]  Tie Jun Cui,et al.  An ultrathin directional carpet cloak based on generalized Snell's law , 2013 .

[37]  Xiang Wan,et al.  Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams , 2016, Advanced science.

[38]  Carlos A. Fernandes Shaped dielectric lenses for wireless millimeter-wave communications , 1999 .

[39]  Willie J. Padilla,et al.  Electrically resonant terahertz metamaterials: Theoretical and experimental investigations , 2007 .

[40]  Eric Plum,et al.  Giant nonlinear optical activity in a plasmonic metamaterial , 2012, Nature Communications.

[41]  Qi Luo,et al.  Compact-Size Low-Profile Wideband Circularly Polarized Omnidirectional Patch Antenna With Reconfigurable Polarizations , 2016, IEEE Transactions on Antennas and Propagation.

[42]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[43]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[44]  J. Parsons,et al.  Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths , 2013, Nature Photonics.

[45]  Subash Vegesna,et al.  Tunable dual-band terahertz metamaterial bandpass filters. , 2013, Optics letters.

[46]  XuLin Quan,et al.  Wideband Omnidirectional Circularly Polarized Antenna Based on Tilted Dipoles , 2015, IEEE Transactions on Antennas and Propagation.

[47]  Guoxing Zheng,et al.  Helicity multiplexed broadband metasurface holograms , 2015, Nature Communications.

[48]  T. Cui,et al.  A broadband terahertz absorber using multi-layer stacked bars , 2015 .

[49]  Nader Engheta,et al.  Digital metamaterials. , 2014, Nature materials.

[50]  J. G. Bij de Vaate,et al.  Phased-array antenna system development for radio-astronomy applications [Antenna Applications Corner] , 2013, IEEE Antennas and Propagation Magazine.

[51]  Atef Z. Elsherbeni,et al.  Beam-Scanning Reflectarray Antennas: A technical overview and state of the art. , 2015, IEEE Antennas and Propagation Magazine.

[52]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[53]  David R. Smith,et al.  An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials , 2012, IEEE Antennas and Propagation Magazine.

[54]  E. Tsymbal,et al.  An ultrathin invisibility skin cloak for visible light , 2022 .

[55]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.

[56]  C. Pfeiffer,et al.  Millimeter-Wave Transmitarrays for Wavefront and Polarization Control , 2013, IEEE Transactions on Microwave Theory and Techniques.

[57]  Fan Yang,et al.  Design and Experiment of a Single-Feed Quad-Beam Reflectarray Antenna , 2012, IEEE Transactions on Antennas and Propagation.

[58]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.