Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars

[1]  Steven W. Squyres,et al.  Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum , 2005 .

[2]  William H. Farrand,et al.  Chemistry and mineralogy of outcrops at Meridiani Planum , 2005 .

[3]  A. Knoll,et al.  An astrobiological perspective on Meridiani Planum , 2005 .

[4]  Richard V. Morris,et al.  The Río Tinto Basin, Spain: Mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars , 2005 .

[5]  S. McLennan,et al.  Experimental epithermal alteration of synthetic Los Angeles meteorite: Implications for the origin of Martian soils and identification of hydrothermal sites on Mars , 2005 .

[6]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[7]  K Davis,et al.  Localization and Physical Property Experiments Conducted by Opportunity at Meridiani Planum , 2004, Science.

[8]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum , 2004, Science.

[9]  Jeffrey R. Johnson,et al.  Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site , 2004, Science.

[10]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[11]  P H Smith,et al.  Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum , 2004, Science.

[12]  M. D. Smith,et al.  Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover , 2004, Science.

[13]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[14]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[15]  Brian M. Hynek,et al.  Implications for hydrologic processes on Mars from extensive bedrock outcrops throughout Terra Meridiani , 2004, Nature.

[16]  S. Ruff,et al.  Formation of the hematite-bearing unit in Meridiani Planum: Evidence for deposition in standing water , 2004 .

[17]  Jens Ormö,et al.  A possible terrestrial analogue for haematite concretions on Mars , 2004, Nature.

[18]  Scott M. McLennan,et al.  Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited , 2004 .

[19]  B. Glass,et al.  SPHERULE LAYERS—RECORDS OF ANCIENT IMPACTS , 2004 .

[20]  Michael Bruce Wyatt,et al.  Constraints on the composition and petrogenesis of the Martian crust , 2003 .

[21]  S. McLennan Sedimentary silica on Mars , 2003 .

[22]  N. O. Snider,et al.  Mantled and exhumed terrains in Terra Meridiani, Mars , 2002 .

[23]  R. Arvidson,et al.  Geologic setting and origin of Terra Meridiani hematite deposit on Mars , 2002 .

[24]  F. Frau The formation-dissolution-precipitation cycle of melanterite at the abandoned pyrite mine of Genna Luas in Sardinia, Italy: environmental implications , 2000, Mineralogical Magazine.

[25]  R. Clark,et al.  Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data , 2000 .

[26]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[27]  B. Schreiber,et al.  Deposition and early alteration of evaporites , 2000 .

[28]  David C. Catling,et al.  A chemical model for evaporites on early Mars: Possible sedimentary tracers of the early climate and implications for exploration , 1999 .

[29]  Philip A. Bland,et al.  Meteorite Accumulations on Mars , 1999 .

[30]  G. Friedman Erratum to: Dissolution-collapse breccias and paleokarst resulting from dissolution of evaporite rocks, especially sulfates , 1997, Carbonates and Evaporites.

[31]  G. Friedman Dissolution-collapse breccias and paleokarst resulting from dissolution of evaporite rocks, especially sulfates , 1997, Carbonates and Evaporites.

[32]  J. Sellés-Martínez Concretion morphology, classification and genesis , 1996 .

[33]  R. E. Wilson,et al.  Recent chemical weathering of basalts , 1992 .

[34]  J. Magee Late Quaternary lacustrine, groundwater, aeolian and pedogenic gypsum in the Prungle Lakes, southeastern Australia , 1991 .

[35]  J. Warren,et al.  The origin and significance of groundwater-seepage gypsum from Bristol Dry Lake, California, USA , 1990 .

[36]  M. Wilkinson,et al.  The rate of growth of sandstone-hosted calcite concretions , 1990 .

[37]  S. Taylor,et al.  Geochemical and NdSr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations , 1990 .

[38]  C. J. Schenk,et al.  Early diagenesis of eolian dune and interdune sands at White Sands, New Mexico , 1988 .

[39]  R. D. Cody,et al.  Gypsum nucleation and crystal morphology in analog saline terrestrial environments , 1988 .

[40]  R. Bathurst Diagenetically Enhanced Bedding in Argillaceous Platform Limestones: Stratified Cementation and Selective Compaction , 1987 .

[41]  G. Kocurek,et al.  Origin of Polygonal Fractures in Sand, Uppermost Navajo and Page Sandstones, Page, Arizona , 1986 .

[42]  E. Simpson,et al.  Amalgamated interdune deposits, White Sands, New Mexico , 1985 .

[43]  S. Fryberger,et al.  Eolian Dune, Interdune, Sand Sheet, and Siliciclastic Sabkha Sediments of an Offshore Prograding Sand Sea, Dhahran Area, Saudi Arabia , 1983 .

[44]  U. Krähenbühl,et al.  Meteoritic material on the moon , 1973 .

[45]  P. Choquette,et al.  Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates , 1970 .

[46]  R. Berner Rate of concretion growth , 1968 .

[47]  G. Kocurek The Petrology of the Sedimentary Rocks , 1938, Nature.

[48]  Masuhiro Kogoma 総論;総論;Introduction , 2006 .

[49]  K. Benison,et al.  Modern and ancient extremely acid saline deposits: terrestrial analogs for martian environments? , 2003, Astrobiology.

[50]  G. Kocurek,et al.  The response of the water table in coastal aeolian systems to changes in sea level , 2001 .

[51]  A. Lasaga Kinetic theory in the earth sciences , 1998 .

[52]  S. Ordóñez,et al.  Tertiary Detrital Gypsum in the Madrid Basin, Spain: Criteria for Interpreting Detrital Gypsum in Continental Evaporitic Sequences , 1994 .

[53]  D. K. McDaniel,et al.  Geochemical approaches to sedimentation, provenance, and tectonics , 1993 .

[54]  K. Marsaglia Basaltic island sand provenance , 1992 .

[55]  J. L. Melvin Evaporites, petroleum, and mineral resources , 1991 .

[56]  T. Lowenstein,et al.  Chapter 3 Depositional Environments of Non-Marine Evaporites , 1991 .

[57]  S. Fryberger Chapter 5: Role of Water in Eolian Deposition , 1990 .

[58]  L. F. Krystinik Chapter 8: Early Diagenesis in Continental Eolian Deposits , 1990 .

[59]  B. Leake,et al.  Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin , 1985, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[60]  A. Kendall Radiaxial Fibrous Calcite: A Reappraisal , 1985 .

[61]  K. Pye Early Post-Depositional Modification of Aeolian Dune Sands , 1983 .

[62]  M. Brookfield,et al.  Eolian sediments and processes , 1983 .

[63]  T. Ahlbrandt,et al.  Sedimentary Features and Significance of Interdune Deposits , 1981 .

[64]  Basaltic Volcanism Study Basaltic volcanism on the terrestrial planets , 1981 .

[65]  Robert A. Berner,et al.  Early Diagenesis: A Theoretical Approach , 1980 .

[66]  N. White,et al.  Spatial aspects of concretionary growth in the Upper Lias of Northeast England , 1978 .

[67]  D. Kinsman Modes of Formation, Sedimentary Associations, and Diagnostic Features of Shallow-Water and Supratidal Evaporites , 1968 .

[68]  J. Avouac,et al.  Earth and Planetary Science Letters , 2022 .