Optical strength of semiconductor laser materials

Abstract A review of phenomena of optical damage in semiconductor laser materials is presented with compilation of empirical data, discussion on theoretical explanation and modeling of related processes. A self-consistent model is considered for quantum-well lasers. The protection technique is also reviewed concerning the elimination of most important facet damaging which is a factor of power performance and reliability of semiconductor lasers.

[1]  Henryk Temkin,et al.  Optically induced catastrophic degradation in InGaAsP/InP layers , 1982 .

[2]  Y. Uematsu,et al.  New window-structure InGaAlP visible light laser diodes by self-selective Zn diffusion-induced disordering , 1991 .

[3]  A. Moser,et al.  Arrhenius parameters for the rate process leading to catastrophic damage of AlGaAs‐GaAs laser facets , 1992 .

[4]  Hirokazu Shimizu,et al.  Power-independent degradation of high-power GaAlAs lasers with nonabsorbing mirrors , 1991 .

[5]  David J. Webb,et al.  Lifetime extension of uncoated AlGaAs single quantum well lasers by high power burn-in in inert atmospheres , 1993 .

[6]  Maciej Bugajski,et al.  Physics of semiconductor lasers , 1991 .

[7]  H. Namizaki,et al.  Aging behavior and surge endurance of 870-900 nm AlGaAs lasers with nonabsorbing mirrors , 1984, IEEE Journal of Quantum Electronics.

[8]  K. Iga,et al.  GaInAsP/InP Surface Emitting Injection Lasers , 1979 .

[9]  W. S. Hobson,et al.  Ga2O3 films for electronic and optoelectronic applications , 1995 .

[10]  H. Namizaki,et al.  Ten-thousand-hour operation of crank transverse-junction-stripe lasers grown by metal-organic chemical vapor deposition , 1986 .

[11]  James W. Mayer,et al.  Laser Annealing of Semiconductors , 1983 .

[12]  D. Welch,et al.  High power (2.1 W) 10‐stripe AlGaAs laser arrays with Si disordered facet windows , 1986 .

[13]  Jean Paul Roger,et al.  Temperature field determination of InGaAsP/InP lasers by photothermal microscopy: Evidence for weak nonradiative processes at the facets , 1994 .

[14]  I. Hayashi,et al.  An AlGaAs window structure laser , 1979, IEEE Journal of Quantum Electronics.

[15]  A H Guenther,et al.  Damage in laser materials. , 1972, Applied optics.

[16]  D. Garbuzov,et al.  High-power 0.8 mu m InGaAsP-GaAs SCH SQW lasers , 1991 .

[17]  D. Harper Laser damage in glasses , 1965 .

[18]  Charles Howard Henry,et al.  The effect of surface recombination on current in AlxGa1−xAs heterojunctions , 1978 .

[19]  Karl Hess,et al.  Disorder of an AlAs‐GaAs superlattice by impurity diffusion , 1981 .

[20]  P. Kirkby,et al.  HIGH PEAK POWER FROM (GAAL)AS-GAAS DOUBLE-HETEROSTRUCTURE INJECTION LASERS , 1973 .

[21]  G. Hatakoshi,et al.  High-Power InGaAlP Laser Diodes for High-Density Optical Recording , 1992 .

[22]  F. A. Chambers,et al.  Intermixing of AlxGa1−xAs/GaAs superlattices by pulsed laser irradiation , 1987 .

[23]  Hiroshi Masuhara,et al.  Laser-Scanning Micromanipulation and Spatial Patterning of Fine Particles , 1991 .

[24]  Richard Schatz,et al.  Steady state model for facet heating leading to thermal runaway in semiconductor lasers , 1994 .

[25]  K. Mettler Photoluminescence as a tool for the study of the electronic surface properties of gallium arsenide , 1977 .

[26]  H. Sommers,et al.  CONTROL OF FACET DAMAGE IN GaAs LASER DIODES , 1971 .

[27]  Paul Anthony Kirkby,et al.  Dislocation pinning in GaAs by the deliberate introduction of impurities , 1975 .

[28]  M. Morimoto,et al.  Accelerated facet degradation of InGaAsP/InP double-heterostructure lasers in water , 1982 .

[29]  R. F. Haglund,et al.  Laser Ablation Mechanisms and Applications , 1991 .

[30]  Amnon Yariv,et al.  Large optical cavity AlGaAs buried heterostructure window lasers , 1982 .

[31]  Norman M. Kroll,et al.  Excitation of Hypersonic Vibrations by Means of Photoelastic Coupling of High-Intensity Light Waves to Elastic Waves , 1965 .

[32]  A mechanism for damage in solids by intense light , 1967 .

[33]  Mitsuo Fukuda,et al.  Facet oxidation of InGaAs/GaAs strained quantum‐well lasers , 1991 .

[34]  T. Yuasa,et al.  Current Density Dependence for Dark-Line Defect Growth Velocity in Strained InGaAs / AlGaAs Quantum Well Laser Diodes , 1991 .

[35]  Wataru Susaki,et al.  A 780 nm high-power and highly reliable laser diode with a long cavity and a thin tapered-thickness active layer , 1990 .

[36]  D. Welch,et al.  Design considerations of large aperture perpendicular gratings semiconductor ring lasers , 1993 .

[37]  A H Guenther,et al.  Laser Induced Damage of Optical Elements-a Status Report. , 1973, Applied optics.

[38]  S. L. Yellen,et al.  Inhibited dark-line defect formation in strained InGaAs/AlGaAs quantum well lasers , 1990, IEEE Photonics Technology Letters.

[39]  G. Henshall The suppression of internally circulating modes in (GaAl)As/GaAs heterostructure lasers and their effect on catastrophic degradation and efficiency , 1977 .

[40]  James J. Coleman,et al.  Characterization of InGaAs‐GaAs strained‐layer lasers with quantum wells near the critical thickness , 1989 .

[41]  H. Sudo,et al.  Catastrophic degradation of GaAlAs DH laser diodes , 1978 .

[42]  Peter W. Epperlein,et al.  Influence of the vertical structure on the mirror facet temperatures of visible GaInP quantum well lasers , 1993 .

[43]  Wilfried Lenth,et al.  Very high-power (425 mW) AlGaAs SQW-GRINSCH ridge laser with frequency-doubled output (41 mW at 428 nm) , 1991 .

[44]  T. Kuech,et al.  Changing photoluminescence intensity from GaAs/Al0.3Ga0.7As heterostructures upon chemisorption of SO2 , 1995 .

[45]  David J. Webb,et al.  Degradation and lifetime studies of high-power single-quantum-well AlGaAs ridge lasers , 1990 .

[46]  D. Webb,et al.  Thermodynamics approach to catastrophic optical mirror damage of AlGaAs single quantum well lasers , 1989 .

[47]  T. Torikai,et al.  Mirror degradation in AlGaAs double‐heterostructure lasers , 1979 .

[48]  Peter W. Epperlein,et al.  Local mirror temperatures of red‐emitting (Al)GaInP quantum‐well laser diodes by Raman scattering and reflectance modulation measurements , 1992 .

[49]  I. L. Fabelinskii,et al.  Molecular scattering of light , 1968 .

[50]  W. Nakwaski Three-dimensional time-dependent thermal model of catastrophic mirror damage in stripe-geometry double-heterostructure GaAs/(AlGa)As diode lasers , 1989 .

[51]  M. Ettenberg,et al.  Al2O3 half‐wave films for long‐life cw lasers , 1977 .

[52]  C. J. Duthler Explanation of laser‐damage cone‐shaped surface pits , 1974 .

[53]  J. L. Smith,et al.  Bulk changes during catastrophic degradation of GaAs laser diodes , 1970 .

[54]  M. Birnbaum,et al.  Reflectivity Enhancement of Semiconductors by Q‐Switched Ruby Lasers , 1968 .

[55]  J. Temmyo,et al.  Degradation behavior of 0.98-/spl mu/m strained quantum well InGaAs/AlGaAs lasers under high-power operation , 1994 .

[56]  U. Gösele,et al.  Non-equilibrium point defect phenomena influencing beryllium and zinc diffusion in GaAs and related compounds , 1992 .

[57]  D. Olness Laser‐Induced Breakdown in Transparent Dielectrics , 1968 .

[58]  M. Pessa,et al.  Aluminum-free 980-nm GaInAs/GaInAsP/GaInP pump lasers , 1994 .

[59]  K. Yodoshi,et al.  High-power operation of 630 nm-band transverse-mode stabilised AlGaInP laser diodes with current-blocking region near facets , 1991 .

[60]  Takeshi Kobayashi,et al.  Temperature Distributions in the GaAs-AlGaAs Double-Heterostructure Laser below and above the Threshold Current , 1975 .

[61]  Yoshio Noguchi,et al.  High power output InGaAsP/InP buried heterostructure lasers , 1981 .

[62]  M. Bertolotti,et al.  Depth and velocity of the laser-melted front from an analytical solution of the heat conduction equation , 1981 .

[63]  Influence of local heating on current‐optical output power characteristics in Ga1−xAlxAs lasers , 1986 .

[64]  Mitsuo Fukuda,et al.  Estimation of the reliability of 0.98 μm InGaAs/GaAs strained quantum well lasers , 1992 .

[65]  P. Epperlein Micro-Temperature Measurements on Semiconductor Laser Mirrors by Reflectance Modulation: A Newly Developed Technique for Laser Characterization , 1993 .

[66]  Condition for no thermal runaway in cw semiconductor lasers , 1993 .

[67]  J. L. Smith,et al.  Intense laser flux effects on GaAs , 1974 .

[68]  Yoshiyasu Ueno,et al.  Effect of thermal resistivity on the catastrophic optical damage power density of AlGaInP laser diodes , 1993 .

[69]  I. Hayashi,et al.  High optical power density emission from a ’’window‐stripe’’ AlGaAs double‐heterostructure laser , 1979 .

[70]  Low‐noise and high‐power operation in high reflectivity coated nonabsorbing mirror GaAlAs lasers , 1990 .

[71]  P. Buchmann,et al.  Lattice disorder, facet heating and catastrophic optical mirror damage of AlGaAs quantum well lasers , 1993 .

[72]  D. Shaw,et al.  Catastrophic degradation in GaAs laser diodes , 1970 .

[73]  A. Epifanov,et al.  Theory of electron-avalanche ionization induced in solids by electromagnetic waves , 1981 .

[74]  R. P. Wang,et al.  Mirror temperature of a semiconductor diode laser studied with a photothermal deflection method , 1993 .

[75]  N. Bloembergen Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics. , 1973, Applied optics.

[76]  E. S. Bliss,et al.  Pulse duration dependence of laser damage mechanisms , 1971 .

[77]  Hiroo Yonezu,et al.  Catastrophic Optical Damage Generation Mechanism in (AlGa)As DH Lasers , 1980 .

[78]  S. Todoroki,et al.  Temperature distribution along the striped active region in high‐power GaAlAs visible lasers , 1985 .

[79]  Mitsuo Fukuda,et al.  Reliability and degradation of semiconductor lasers and LEDs , 1991 .

[80]  A. Moser Thermodynamics of facet damage in cleaved AlGaAs lasers , 1991 .

[81]  K. Shinozaki,et al.  High‐power operation of 830‐nm AlGaAs laser diodes , 1989 .

[82]  David G. Mehuys,et al.  High-power, near-diffraction-limited large-area traveling-wave semiconductor amplifiers , 1993 .

[83]  R. G. Waters,et al.  Diode laser degradation mechanisms: A review , 1991 .

[84]  D. Hanna,et al.  Q-switched laser damage of infrared nonlinear materials , 1972 .

[85]  G. Kano,et al.  Highly-reliable CW operation of 100 mW GaAlAs buried twin ridge substrate lasers with nonabsorbing mirrors , 1989 .

[86]  M. Pessa,et al.  Limitations of two‐dimensional passive waveguide model for λ=980 nm Al‐free ridge waveguide lasers , 1994 .

[87]  H. Kressel,et al.  Catastrophic Degradation in GaAs Injection Lasers , 1967 .

[88]  B. Hakki,et al.  Catastrophic failure in GaAs double-heterostructure injection lasers , 1974 .

[89]  H. Watanabe,et al.  150 mW fundamental-transverse-mode operation of 670 nm window laser diode , 1993 .

[90]  R. J. Nelson,et al.  Minority‐carrier lifetimes and internal quantum efficiency of surface‐free GaAs , 1978 .

[91]  P. G. Eliseev,et al.  Degradation of injection lasers , 1973 .

[92]  David J. Webb,et al.  Comparison of the facet heating behavior between AlGaAs single quantum‐well lasers and double‐heterojunction lasers , 1992 .

[93]  T. Hayakawa,et al.  Facet degradations in Ga1−xAlxAs/Ga1−yAlyAs double‐heterostructure lasers , 1981 .

[94]  H. Yonezu,et al.  Degradation of (AlGa)As DH lasers due to facet oxidation , 1978 .

[95]  Y. Medvedev THERMODYNAMIC STABILITY OF GAAS SULFUR PASSIVATION , 1994 .

[96]  A. Jakubowicz Electron beam charging thermography of mirrors of semiconductor laser diodes , 1993 .

[97]  P. Eliseev Causes and distribution of failure of semiconductor lasers (review) , 1986 .

[98]  C. Henry,et al.  Catastrophic damage of AlxGa1−xAs double‐heterostructure laser material , 1979 .

[99]  H. Todokoro,et al.  Degradation of Ga1−xAlxAs visible diode lasers , 1979 .

[100]  H. Gerritsen,et al.  Study of surface recombination in GaAs and InP by picosecond optical techniques , 1980 .

[101]  A. Takami,et al.  High-power 780 nm window diffusion stripe laser diodes fabricated by an open-tube two-step diffusion technique , 1990 .

[102]  David E. Aspnes,et al.  RECOMBINATION AT SEMICONDUCTOR SURFACES AND INTERFACES , 1983 .

[103]  M. Ueno Optimum design conditions for AlGaAs window stripe lasers , 1981 .

[104]  K. Wakita,et al.  TEM observation of catastrophically degraded Ga1−xAlxAs double‐heterostructure lasers , 1979 .

[105]  F. L. Terry,et al.  Hydrogen sulfide plasma passivation of gallium arsenide , 1992 .

[106]  Aland K. Chin,et al.  Temperature profile along the cavity axis of high power quantum well lasers during operation , 1994 .

[107]  D. Webb,et al.  Evidence for current‐density‐induced heating of AlGaAs single‐quantum‐well laser facets , 1991 .

[108]  S. Groves,et al.  Low‐threshold InGaAs strained‐layer quantum‐well lasers (λ=0.98 μm) with GaInP cladding layers and mass‐transported buried heterostructure , 1992 .

[109]  Roger M. Wood,et al.  Laser damage in optical materials , 1986 .

[110]  Rajaram Bhat,et al.  High-performance uncooled 1.3-/spl mu/m Al/sub x/Ga/sub y/In/sub 1-x-y/As/InP strained-layer quantum-well lasers for subscriber loop applications , 1994 .

[111]  J. Sites,et al.  Photoluminescence dead layer in p‐type InP , 1982 .

[112]  S. Kamiyama,et al.  Improvement of catastrophic optical damage level of AlGaInP visible laser diodes by sulfur treatment , 1991 .

[113]  Jerry R. Meyer,et al.  Optical heating in semiconductors: Laser damage in Ge, Si, InSb, and GaAs , 1980 .

[114]  H. Brugger,et al.  Mapping of local temperatures on mirrors of GaAs/AlGaAs laser diodes , 1990 .

[115]  M. Kruer,et al.  Optical heating in semiconductors , 1980 .

[116]  D. Webb,et al.  Raman microprobe study of the time development of AlGaAs single quantum well laser facet temperature on route to catastrophic breakdown , 1991 .

[117]  Kohroh Kobayashi,et al.  Continuous-wave high-power (75 mW) operation of a transverse-mode stabilised window-structure 680 nm AlGaInP visible laser diode , 1990 .

[118]  Richard K. Ahrenkiel,et al.  Ultralow recombination velocity at Ga0.5In0.5P/GaAs heterointerfaces , 1989 .

[119]  D. Welch,et al.  Numerical analysis of flared semiconductor laser amplifiers , 1993 .

[120]  Johann Peter Reithmaier,et al.  High‐power single‐mode AlGaAs lasers with bent‐waveguide nonabsorbing etched mirrors , 1992 .

[121]  Laser Damage on Semiconductor Surfaces , 1967 .

[122]  J. V. Cole,et al.  A model for surface recombination velocity and lifetime of semiconductor lasers , 1993 .

[123]  D. Webb,et al.  Beam properties of AlGaAs power lasers with high-quality etched mirrors , 1991, IEEE Photonics Technology Letters.

[124]  I. Campbell,et al.  cw laser irradiation of GaAs: Arsenic formation and photoluminescence degradation , 1990 .

[125]  M. Kondô,et al.  High-power operation of selfaligned stepped substrate (S/sup 3/) AlGaInP visible laser diode , 1993 .

[126]  J. Connolly,et al.  Nonabsorbing-mirror (NAM) CDH-LOC diode lasers , 1984 .

[127]  Inspec,et al.  Properties of lattice-matched and strained indium gallium arsenide , 1993 .

[128]  Akiko Gomyo,et al.  Novel Window-Structure AlGaInP Visible-Light Laser Diodes with Non-Absorbing Facets Fabricated by Utilizing GaInP Natural Superlattice Disordering , 1990 .

[129]  C. Townes,et al.  Stimulated Brillouin Scattering and Coherent Generation of Intense Hypersonic Waves , 1964 .

[130]  Hirokazu Shimizu,et al.  A novel high-power laser structure with current-blocked regions near cavity facets , 1987 .

[131]  H. Casey,et al.  Heterostructure lasers , 1978 .

[132]  Wlodzimierz Nakwaski,et al.  Thermal model of the catastrophic degradation of high-power stripe-geometry GaAs/(AlGa)As double-heterostructure diode lasers , 1990 .

[133]  Harvey B. Serreze,et al.  Reliability of GaAs-based semiconductor diode lasers: 0.6-1.1 mu m , 1993 .

[134]  O. Imafuji,et al.  High power single mode operation of long cavity GaAlAs lasers with nonabsorbing mirror buried twin ridge substrate structure , 1992 .

[135]  Kenji Uchida,et al.  High-power 780 nm AlGaAs quantum-well lasers and their reliable operation , 1991 .

[136]  C. Sam Laser Damage of GaAs and ZnTe at 1.06 micro. , 1973, Applied optics.

[137]  M. Pessa,et al.  High-power operation of aluminum-free ( kappa =0.98 mu m) pump laser for erbium-doped fiber amplifier , 1993, IEEE Photonics Technology Letters.

[138]  M. Takusagawa,et al.  Catastrophic degradation level of visible and infrared GaAlAs lasers , 1982 .

[139]  Y. Matsuoka Laser-induced damage to semiconductors , 1976 .

[140]  R.G. Waters,et al.  Reliability of InAlGaAs strained-quantum-well lasers operating at 0.81 mu m , 1992, IEEE Photonics Technology Letters.

[141]  F. Houle,et al.  Chemical changes accompanying facet degradation of AlGaAs quantum well lasers , 1992 .

[142]  G. Henshall Gallium aluminium arsenide heterostructure lasers: Factors affecting catastrophic degradation , 1977 .

[143]  D. Cooper,et al.  Internal self-damage of gallium arsenide lasers , 1966 .

[144]  Wataru Susaki,et al.  High-power and fundamental-mode oscillating flared sba lasers , 1988 .

[145]  Catherine Caneau,et al.  Buried heterostructure 0.98 μm InGaAs/InGaAsP/InGaP lasers , 1993 .

[146]  N. L. Boling,et al.  Importance of Fresnel reflections in laser surface damage of transparent dielectrics , 1972 .

[147]  P. Zory,et al.  Temperature rise at mirror facet of CW semiconductor lasers , 1992 .

[148]  Th. Forster,et al.  High‐power operation of strained InGaAs/AlGaAs single quantum well lasers , 1991 .

[149]  T. Főrster,et al.  Laser operation‐induced migration of beryllium at mirrors of GaAs/AlGaAs laser diodes , 1993 .

[150]  W. Nakwaski Thermal analysis of the catastrophic mirror damage in laser diodes , 1985 .

[151]  J. Butler,et al.  Chapter 2 Heterojunction Laser Diodes , 1979 .

[152]  C. L. Tien,et al.  Facet heating of quantum well lasers , 1993 .

[153]  Masaaki Yuri,et al.  600 mW CW single-mode GaAlAs triple-quantum-well laser with a new index guided structure , 1993 .