Characterization of the new scintillator Cs2LiYCl6:Ce3+

The first domestic inorganic scintillator, Cs2LiYCl6:Ce3+ (CLYC), was grown at Beijing Glass Research Institute using the vertical Bridgman method. In this work, we evaluated the performance of this new CLYC crystal in terms of its gamma-ray energy resolution and pulse shape discrimination (PSD) capability between neutrons and gamma rays. The decay times associated with different scintillation mechanisms were obtained by fitting decay functions to the neutron and gamma-ray waveform structures. We found an energy resolution of ~ 4.5% for 662-keV gamma rays and efficient neutron/gamma PSD with a figure of merit of ~ 2.6. Under gamma-ray excitation, there is an ultrafast scintillation mechanism in CLYC with a decay time of approximately 2 ns, whereas there is no evidence of ultrafast decay under thermal neutron excitation. This work contributes to the promotion of domestic development of CLYC.

[1]  P. Dorenbos,et al.  New thermal neutron scintillators: Cs/sub 2/LiYCl/sub 6/:Ce/sup 3+/ and Cs/sub 2/LiYBr/sub 6/:Ce/sup 3+/ , 2004, IEEE Transactions on Nuclear Science.

[2]  S. Pozzi,et al.  Characterization of the CLYC detector for neutron and photon detection , 2014 .

[3]  J. Glodo,et al.  ${\rm Cs}_{2}{\rm LiYCl}_{6}:{\rm Ce}$ Scintillator for Nuclear Monitoring Applications , 2009, IEEE Transactions on Nuclear Science.

[4]  B. S. Budden,et al.  Characterization and Investigation of the Thermal Dependence of ${\rm Cs}_{2}{\rm LiYCl}_{6}:{\rm Ce}^{3+}$ (CLYC) Waveforms , 2013, IEEE Transactions on Nuclear Science.

[5]  J. Christian,et al.  Gamma–neutron imaging system utilizing pulse shape discrimination with CLYC , 2015 .

[6]  Giuseppe Gorini,et al.  The CLYC-6 and CLYC-7 response to γ-rays, fast and thermal neutrons , 2016 .

[7]  A. V. Klimenko,et al.  Pulse-shape analysis of Cs2LiYCl6:Ce scintillator for neutron and gamma-ray discrimination , 2012 .

[8]  C. Cattadori,et al.  Fast neutron measurements with 7Li and 6Li enriched CLYC scintillators , 2016 .

[9]  Urmila Shirwadkar,et al.  Bridgman growth of Cs2LiYCl6:Ce and 6Li-enriched Cs26LiYCl6:Ce crystals for high resolution gamma ray and neutron spectrometers , 2010 .

[10]  C. Lister,et al.  Optimizing Cs2LiYCl6 for fast neutron spectroscopy , 2012 .

[11]  Urmila Shirwadkar,et al.  Pulse-shape analysis of CLYC for thermal neutrons, fast neutrons, and gamma-rays , 2013 .

[12]  J. Glodo,et al.  Optical and scintillation properties of Cs/sub 2/LiYCl/sub 6/:Ce/sup 3+/ and Cs/sub 2/LiYCl/sub 6/:Pr3/sup +/ crystals , 2005, IEEE Symposium Conference Record Nuclear Science 2004..

[13]  J. Glodo,et al.  Scintillation Properties of 1 Inch ${\rm Cs}_{2}{\rm LiYCl}_{6}{:}{\rm Ce}$ Crystals , 2008, IEEE Transactions on Nuclear Science.

[14]  Pieter Dorenbos,et al.  Optical and scintillation properties of pure and Ce3+-doped Cs2LiYCl6 and Li3YCl6 : Ce3+ crystals , 1999 .

[15]  P. Menge,et al.  Pulse shape discrimination of Cs2LiYCl6:Ce3+ scintillator from −30 °C to 180 °C , 2015 .

[16]  Pieter Dorenbos,et al.  Luminescence and scintillation properties of CS2LiYCl6:Ce3+ for γ and neutron detection , 2005 .

[17]  H. R. Andrews,et al.  Fast Neutron Spectroscopy Using (CLYC) Scintillator , 2013 .

[18]  P. Dorenbos,et al.  Scintillation and spectroscopy of the pure and Ce3+-doped elpasolites: Cs2LiYX6 (X = Cl, Br) , 2002 .

[19]  Kanai S. Shah,et al.  Development of Cs2LiYCl6 scintillator , 2013 .

[20]  Piotr A. Rodnyi,et al.  Core–valence luminescence in scintillators , 2004 .

[21]  A. Miller,et al.  Response functions of Cs2LiYCl6: Ce scintillator to neutron and gamma radiation , 2014 .