Characterisation framework for epileptic signals

In this study, two epileptic signals are extracted from scanned images and three algorithms are proposed to characterise epileptic signals: the modified least squares, modified nearest neighbour, and slopes algorithms. The comparison results between the three algorithms are shown for the characterisation of two epileptic signals.

[1]  David G. Stork,et al.  Pattern Classification , 1973 .

[2]  Robert M. Haralick,et al.  Prosthesis Control Using a Nearest Neighbor Electromyographic Pattern Classifier , 1983, IEEE Transactions on Biomedical Engineering.

[3]  Ching Y. Suen,et al.  A fast parallel algorithm for thinning digital patterns , 1984, CACM.

[4]  Wisama Khalil,et al.  Reducing the computational burden of the dynamic models of robots , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[5]  S. Douglas,et al.  Linearized least-squares training of multilayer feedforward neural networks , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[6]  Gary E. Kopec Least-squares font metric estimation from images , 1993, IEEE Trans. Image Process..

[7]  Karl Sims,et al.  Handwritten Character Classification Using Nearest Neighbor in Large Databases , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  O. Bretscher Linear Algebra with Applications , 1996 .

[9]  Gonzalo Pajares Martinsanz,et al.  Visión por computador: imágenes digitales y aplicaciones , 2001 .

[10]  Chong Sze Tong,et al.  Adaptive approximate nearest neighbor search for fractal image compression , 2002, IEEE Trans. Image Process..

[11]  Jorge Luis Villar Santos,et al.  Métodos numéricos con MATLAB , 2003 .

[12]  Patrick J. Loughlin,et al.  Stiffness and Damping in Postural Control Increase With Age , 2010, IEEE Transactions on Biomedical Engineering.

[13]  José de Jesús Rubio,et al.  Backpropagation to train an evolving radial basis function neural network , 2010, Evol. Syst..

[14]  S. Shirani,et al.  Segmentation of DNA microarray images using an adaptive graph-based method , 2010 .

[15]  Plamen P. Angelov,et al.  Uniformly Stable Backpropagation Algorithm to Train a Feedforward Neural Network , 2011, IEEE Transactions on Neural Networks.

[16]  Wanqing Li,et al.  Semi-supervised maximum a posteriori probability segmentation of brain tissues from dual-echo magnetic resonance scans using incomplete training data , 2011 .

[17]  Hai-Shan Wu,et al.  Segmentation of textured cell images based on frequency analysis , 2011 .

[18]  Edwin Lughofer,et al.  On-line elimination of local redundancies in evolving fuzzy systems , 2011, Evol. Syst..

[19]  José de Jesús Rubio,et al.  Modeling of the relative humidity via functional networks and control of the temperature via classic controls for a bird incubator , 2011, Neural Computing and Applications.

[20]  Mohammed Ghanbari,et al.  Reversible and high-capacity data hiding in medical images , 2011 .

[21]  R. Barbuzza,et al.  Metropolis monte carlo for tomographic reconstruction with prior smoothness information , 2011 .

[22]  Daniel F. Leite,et al.  Evolving fuzzy granular modeling from nonstationary fuzzy data streams , 2012, Evol. Syst..

[23]  Alma Y. Alanis,et al.  System Identification Using Multilayer Differential Neural Networks: A New Result , 2012, J. Appl. Math..

[24]  Plamen P. Angelov,et al.  Creating Evolving User Behavior Profiles Automatically , 2012, IEEE Transactions on Knowledge and Data Engineering.

[25]  Maricela Figueroa,et al.  Inverse kinematics of a mobile robot , 2012, Neural Computing and Applications.

[26]  J. Humberto Pérez-Cruz,et al.  Robust Adaptive Neurocontrol of SISO Nonlinear Systems Preceded by Unknown Deadzone , 2012 .