The Smaller the Better: Hosting Trivalent Rare-Earth Guests in Cu–P Clathrate Cages

[1]  K. Kovnir,et al.  Unconventional Clathrates with Transition Metal-Phosphorus Frameworks. , 2018, Accounts of chemical research.

[2]  H. Borrmann,et al.  Direct measurement of individual phonon lifetimes in the clathrate compound Ba7.81Ge40.67Au5.33 , 2017, Nature Communications.

[3]  Yanming Ma,et al.  Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity. , 2017, Physical review letters.

[4]  S. Sen,et al.  Breaking the Tetra-Coordinated Framework Rule: New Clathrate Ba8 M24 P28+δ (M=Cu/Zn). , 2017, Angewandte Chemie.

[5]  Colm O'Dwyer,et al.  Thermoelectric Materials , 2014 .

[6]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[7]  G. Galli,et al.  Si-based Earth abundant clathrates for solar energy conversion , 2014 .

[8]  K. Hradil,et al.  Thermopower enhancement by encapsulating cerium in clathrate cages. , 2013, Nature materials.

[9]  P. Canfield,et al.  A family of binary magnetic icosahedral quasicrystals based on rare earths and cadmium. , 2013, Nature materials.

[10]  R. Podloucky,et al.  The ternary system Au–Ba–Si: Clathrate solution, electronic structure, physical properties, phase equilibria and crystal structures , 2012 .

[11]  Y. Prots,et al.  Introducing a magnetic guest to a tetrel-free clathrate: synthesis, structure, and properties of Eu(x)Ba(8-x)Cu16P30 (0 ≤ x ≤ 1.5). , 2011, Inorganic chemistry.

[12]  M. Shatruk,et al.  “Chemical Metamagnetism”: From Antiferromagnetic PrCo2P2 to Ferromagnetic Pr0.8Eu0.2Co2P2 via Chemical Compression , 2011 .

[13]  H. Lichte,et al.  Synthesis of the clathrate-I phase Ba(8-x)Si46 via redox reactions. , 2011, Inorganic chemistry.

[14]  G. J. Snyder,et al.  Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery , 2011 .

[15]  Q. Si,et al.  Heavy Fermions and Quantum Phase Transitions , 2010, Science.

[16]  C. Myles,et al.  Framework contraction in Na-stuffed Si(cF136). , 2010, Inorganic chemistry.

[17]  A. Balch,et al.  Isolation and structural characterization of the molecular nanocapsule Sm(2)@D(3d)(822)-C(104). , 2009, Angewandte Chemie.

[18]  I. Veremchuk,et al.  Cs(8-x)Si(46): a type-I clathrate with expanded silicon framework. , 2009, Chemistry.

[19]  G. T. Woods,et al.  Long-range ferromagnetism and giant magnetocaloric effect in type VIII Eu8Ga16Ge30 clathrates , 2008 .

[20]  Investigation of Yb substitution in the clathrate phase Eu8Ga16Ge30 , 2008 .

[21]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[22]  M. Nicklas,et al.  Superconductivity in the platinum germanides MPt4Ge12 (M = rare-earth or alkaline-earth metal) with filled skutterudite structure. , 2007, Physical review letters.

[23]  H. Borrmann,et al.  K7B7Si39, a borosilicide with the clathrate I structure. , 2007, Angewandte Chemie.

[24]  R. Black,et al.  Six closely related YbT2Zn20 (T = Fe, Co, Ru, Rh, Os, Ir) heavy fermion compounds with large local moment degeneracy , 2006, Proceedings of the National Academy of Sciences.

[25]  Yuri Grin,et al.  A guest-free germanium clathrate , 2006, Nature.

[26]  G. J. Snyder,et al.  Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation , 2006 .

[27]  K. Itoh,et al.  Mechanism of superconductivity in the polyhedral-network compound Ba8Si46 , 2003, Nature materials.

[28]  H. Fukuoka,et al.  Superconductivity of metal deficient silicon clathrate compounds, Ba8-xSi46 (0< x < or = 1.4). , 2003, Inorganic chemistry.

[29]  M. Baenitz,et al.  Structural, transport, magnetic, and thermal properties of Eu8Ga16Ge30 , 2001 .

[30]  S. Paschen,et al.  Comment on "Silicon clathrate with an f-electron system". , 2001, Physical review letters.

[31]  A. Fisher,et al.  Small-bandgap endohedral metallofullerenes in high yield and purity , 1999, Nature.

[32]  G. A. Slack,et al.  Glasslike Heat Conduction in High-Mobility Crystalline Semiconductors , 1998, cond-mat/9812387.

[33]  E. J. Freeman,et al.  Localized vibrational modes in metallic solids , 1998, Nature.

[34]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[35]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .