Nonlinear adaptive filtering in terrain-referenced navigation

Nonlinear adaptive estimation is applied to terrain-referenced navigation in three dimensions. In this scheme, a bank of parallel filters is initialized with different altitude hypotheses, where each filter represents a discrete (gridded) approximation to the Bayes minimum variance estimator. The importance weight of each filter is recursively updated using the measurement residuals. The altitude bias estimate is found from a weighted sum of the filter hypotheses. Numerical simulations with synthetic data indicate that an altitude bias can be accurately estimated without the use of three-dimensional grids. The computational efficiency and parallel nature of the filters allow real-time positioning in three dimensions.

[1]  N. Bergman,et al.  Deterministic and stochastic Bayesian methods in terrain navigation , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[2]  Andrew E. Johnson,et al.  Analysis and Testing of a LIDAR-Based Approach to Terrain Relative Navigation for Precise Lunar Landing , 2011 .

[3]  M.U. de Haag,et al.  Dual Airborne Laser Scanners Aided Inertial for Improved Autonomous Navigation , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[4]  L. Teng Theory and application of Kalman filtering , 1970 .

[5]  Bandu N. Pamadi,et al.  Airplane Response and Closed-Loop Control , 2004 .

[6]  Lennart Ljung,et al.  Point-mass filter and Cramer-Rao bound for terrain-aided navigation , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[7]  Ralph. Deutsch,et al.  Estimation Theory , 1966 .

[8]  N. Bergman Bayesian Inference in Terrain Navigation , 1997 .

[9]  Bandu N. Pamadi,et al.  Performance, Stability, Dynamics, and Control of Airplanes , 2015 .

[10]  Fredrik Gustafsson,et al.  Recursive estimation of three-dimensional aircraft position using terrain-aided positioning , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[11]  L. B. Hostetler,et al.  Nonlinear Kalman filtering techniques for terrain-aided navigation , 1983 .

[12]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[13]  T. Humphreys STATEMENT ON THE VULNERABILITY OF CIVIL UNMANNED AERIAL VEHICLES AND OTHER SYSTEMS TO CIVIL GPS , 2012 .

[14]  W. Gracey Measurement of aircraft speed and altitude , 1981 .

[15]  Jan Wendel,et al.  Comparison of Different Terrain Referenced Navigation Techniques , 2002 .

[16]  Pere Ridao,et al.  A survey on Terrain Based Navigation for AUVs , 2010, OCEANS 2010 MTS/IEEE SEATTLE.

[17]  J. E. Pritchett,et al.  Robust guidance and navigation for airborne vehicles using GPS/terrain aiding , 2000, IEEE 2000. Position Location and Navigation Symposium (Cat. No.00CH37062).

[18]  Fredrik Gustafsson,et al.  Terrain navigation using Bayesian statistics , 1999 .

[19]  John B. Moore,et al.  Optimal State Estimation in High Noise , 1968, Inf. Control..

[20]  George M. Siouris,et al.  Aerospace Avionics Systems: A Modern Synthesis , 1993 .

[21]  O. Hallingstad,et al.  Terrain Aided Underwater Navigation Using Point Mass and Particle Filters , 2006, 2006 IEEE/ION Position, Location, And Navigation Symposium.

[22]  Maarten Speekenbrink,et al.  A tutorial on particle filters , 2016 .

[23]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .