Strichartz estimates for the Euler equations in the rotational framework

Abstract We consider the initial value problems of the incompressible Euler equations in the rotational framework. We obtain the optimal range of the Strichartz estimate for the linear group associated with the Coriolis forces. As an application, we prove that the lifespan of the solution can be taken arbitrarily large provided that the speed of rotation is sufficiently high.

[1]  Alexandre Dutrifoy Slow Convergence to Vortex Patches in Quasigeostrophic Balance , 2004 .

[2]  T. Ogawa,et al.  NAVIER-STOKES EQUATIONS IN THE BESOV SPACE NEAR L∞ AND BMO , 2003 .

[3]  Takayoshi Ogawa,et al.  The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations , 2002 .

[4]  Ryo Takada Local existence and blow-up criterion for the Euler equations in Besov spaces of weak type , 2008 .

[5]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[6]  Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equations , 1997, math/9704212.

[7]  Young Ja Park,et al.  Existence of Solution for the Euler Equations in a Critical Besov Space (ℝ n ) , 2004 .

[8]  B. Desjardins,et al.  Anisotropy and dispersion in rotating fluids , 2002 .

[9]  Tosio Kato Nonstationary flows of viscous and ideal fluids in R3 , 1972 .

[10]  H. Kozono,et al.  Limiting Case of the Sobolev Inequality in BMO,¶with Application to the Euler Equations , 2000 .

[11]  Frédéric Charve Asymptotics and vortex patches for the quasigeostrophic approximation , 2006 .

[12]  H. Triebel Theory Of Function Spaces , 1983 .

[13]  Alexandre Dutrifoy Examples of dispersive effects in non-viscous rotating fluids , 2005 .

[14]  Hideyuki Miura,et al.  Dissipative Quasi-Geostrophic Equation for Large Initial Data in the Critical Sobolev Space , 2006 .

[15]  T. Tao,et al.  Endpoint Strichartz estimates , 1998 .

[16]  W. Littman Fourier transforms of surface-carried measures and differentiability of surface averages , 1963 .

[17]  M. Weinstein,et al.  Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation , 1991 .

[18]  Dongho Chae,et al.  Local existence and blow‐up criterion for the Euler equations in the Besov spaces , 2004 .

[19]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .

[20]  Zhifei Zhang,et al.  On the Well-posedness of the Ideal MHD Equations in the Triebel–Lizorkin Spaces , 2007, 0708.0099.

[21]  Winfried Sickel,et al.  Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.

[22]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[23]  E. Stein,et al.  Functional Analysis: Introduction to Further Topics in Analysis , 2011 .

[24]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[25]  Dongho Chae,et al.  On the well‐posedness of the Euler equations in the Triebel‐Lizorkin spaces , 2002 .