Split-and-Combine Singular Value Decomposition for Large-Scale Matrix
暂无分享,去创建一个
[1] Lars Eldén,et al. Partial least-squares vs. Lanczos bidiagonalization - I: analysis of a projection method for multiple regression , 2004, Comput. Stat. Data Anal..
[2] Tony F. Chan,et al. An Improved Algorithm for Computing the Singular Value Decomposition , 1982, TOMS.
[3] Matthew Chalmers,et al. A linear iteration time layout algorithm for visualising high-dimensional data , 1996, Proceedings of Seventh Annual IEEE Visualization '96.
[4] Josef Stoer,et al. Numerische Mathematik 1 , 1989 .
[5] J. Demmel,et al. The bidiagonal singular value decomposition and Hamiltonian mechanics: LAPACK working note No. 11 , 1989 .
[6] M. Brand,et al. Fast low-rank modifications of the thin singular value decomposition , 2006 .
[7] Lothar Reichel,et al. Restarted block Lanczos bidiagonalization methods , 2007, Numerical Algorithms.
[8] Jengnan Tzeng,et al. Multidimensional scaling for large genomic data sets , 2008, BMC Bioinformatics.
[9] David J. Hand,et al. Discrimination and Classification , 1982 .
[10] Gene H. Golub,et al. Singular value decomposition and least squares solutions , 1970, Milestones in Matrix Computation.
[11] W. Torgerson. Multidimensional scaling: I. Theory and method , 1952 .
[12] E. Aronson,et al. Theory and method , 1985 .
[13] Lothar Reichel,et al. Augmented Implicitly Restarted Lanczos Bidiagonalization Methods , 2005, SIAM J. Sci. Comput..
[14] L. Eld. Partial least-squares vs. Lanczos bidiagonalization—I: analysis of a projection method for multiple regression , 2004 .
[15] Matthew Chalmers,et al. Fast Multidimensional Scaling Through Sampling, Springs and Interpolation , 2003, Inf. Vis..