On the Bottleneck Complexity of MPC with Correlated Randomness

At ICALP 2018, Boyle et al. introduced the notion of the bottleneck complexity of a secure multi-party computation (MPC) protocol. This measures the maximum communication complexity of any one party in the protocol, aiming to improve load-balancing among the parties. In this work, we study the bottleneck complexity of MPC in the preprocessing model, where parties are given correlated randomness ahead of time. We present two constructions of bottleneck-efficient MPC protocols, whose bottleneck complexity is independent of the number of parties: 1. A protocol for computing abelian programs, based only on one-way functions. 2. A protocol for selection functions, based on any linearly homomorphic encryption scheme. Compared with previous bottleneck-efficient constructions, our protocols can be based on a wider range of assumptions, and avoid the use of fully homomorphic encryption.

[1]  Yehuda Lindell,et al.  Hiding the Input-Size in Secure Two-Party Computation , 2013, IACR Cryptol. ePrint Arch..

[2]  Andrew Chi-Chih Yao,et al.  How to generate and exchange secrets , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[3]  David Chaum,et al.  Multiparty Unconditionally Secure Protocols (Extended Abstract) , 1988, STOC.

[4]  Yuval Ishai,et al.  Secure Multiparty Computation with General Interaction Patterns , 2016, IACR Cryptol. ePrint Arch..

[5]  Geoffroy Couteau A Note on the Communication Complexity of Multiparty Computation in the Correlated Randomness Model , 2018, IACR Cryptol. ePrint Arch..

[6]  Yuval Ishai,et al.  Scalable Multiparty Computation with Nearly Optimal Work and Resilience , 2008, CRYPTO.

[7]  Tal Malkin,et al.  Multi-party Computation of Polynomials and Branching Programs without Simultaneous Interaction , 2013, EUROCRYPT.

[8]  Vinod Vaikuntanathan,et al.  Multiparty Computation with Low Communication, Computation and Interaction via Threshold FHE , 2012, EUROCRYPT.

[9]  Avi Wigderson,et al.  Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract) , 1988, STOC.

[10]  Silvio Micali,et al.  A Completeness Theorem for Protocols with Honest Majority , 1987, STOC 1987.

[11]  Amit Sahai,et al.  From FE Combiners to Secure MPC and Back , 2019, IACR Cryptol. ePrint Arch..

[12]  Rafail Ostrovsky,et al.  On the Message Complexity of Secure Multiparty Computation , 2018, Public Key Cryptography.

[13]  Yuval Ishai,et al.  Best Possible Information-Theoretic MPC , 2018, IACR Cryptol. ePrint Arch..

[14]  Moni Naor,et al.  Communication preserving protocols for secure function evaluation , 2001, STOC '01.

[15]  Anat Paskin-Cherniavsky,et al.  Evaluating Branching Programs on Encrypted Data , 2007, TCC.

[16]  Yuval Ishai,et al.  Scalable Secure Multiparty Computation , 2006, CRYPTO.

[17]  Ran Canetti,et al.  Security and Composition of Multiparty Cryptographic Protocols , 2000, Journal of Cryptology.

[18]  Hoeteck Wee,et al.  Laconic Function Evaluation and Applications , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[19]  Oded Regev,et al.  On lattices, learning with errors, random linear codes, and cryptography , 2005, STOC '05.

[20]  Andrew Chi-Chih Yao,et al.  Protocols for Secure Computations (Extended Abstract) , 1982, FOCS.

[21]  Anat Paskin-Cherniavsky,et al.  Non-Interactive Secure Multiparty Computation , 2014, IACR Cryptol. ePrint Arch..

[22]  Shafi Goldwasser,et al.  Communication Locality in Secure Multi-party Computation - How to Run Sublinear Algorithms in a Distributed Setting , 2013, TCC.

[23]  Anat Paskin-Cherniavsky,et al.  On the Power of Correlated Randomness in Secure Computation , 2013, TCC.

[24]  Yehuda Lindell,et al.  Secure Computation on the Web: Computing without Simultaneous Interaction , 2011, IACR Cryptol. ePrint Arch..

[25]  Ivan Damgård,et al.  Secure Two-Party Computation with Low Communication , 2012, IACR Cryptol. ePrint Arch..

[26]  Ivan Damgård,et al.  On the Communication Required for Unconditionally Secure Multiplication , 2016, CRYPTO.

[27]  Mihir Bellare,et al.  Foundations of garbled circuits , 2012, CCS.

[28]  Elaine Shi,et al.  Secure Massively Parallel Computation for Dishonest Majority , 2020, IACR Cryptol. ePrint Arch..

[29]  Manoj Prabhakaran,et al.  The Bottleneck Complexity of Secure Multiparty Computation , 2018, ICALP.

[30]  Koji Nuida,et al.  Non-interactive Secure Multiparty Computation for Symmetric Functions, Revisited: More Efficient Constructions and Extensions , 2021, CRYPTO.