Iterative methods for strict pseudo-contractions in Hilbert spaces

Abstract Let { T i } i = 1 N be N strict pseudo-contractions defined on a closed convex subset C of a real Hilbert space H . Consider the problem of finding a common fixed point of these mappings and consider the parallel and cyclic algorithms for solving this problem. We will prove the weak convergence of these algorithms. Moreover, by applying additional projections, we further prove that these algorithms can be modified to have strong convergence.

[1]  Giuseppe Marino,et al.  Convergence of generalized proximal point algorithms , 2004 .

[2]  F. Browder,et al.  Construction of fixed points of nonlinear mappings in Hilbert space , 1967 .

[3]  Hong-Kun Xu Strong convergence of an iterative method for nonexpansive and accretive operators , 2006 .

[4]  Hong-Kun Xu,et al.  Strong convergence of modified Mann iterations , 2005 .

[5]  Hong-Kun Xu,et al.  Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups , 2006 .

[6]  Hong-Kun Xu,et al.  Strong Convergence of Approximating Fixed Point Sequences for Nonexpansive Mappings , 2006, Bulletin of the Australian Mathematical Society.

[7]  W. R. Mann,et al.  Mean value methods in iteration , 1953 .

[8]  Otmar Scherzer,et al.  Convergence Criteria of Iterative Methods Based on Landweber Iteration for Solving Nonlinear Problems , 1995 .

[9]  Hong-Kun Xu Iterative Algorithms for Nonlinear Operators , 2002 .

[10]  Paranjothi Pillay,et al.  Iterative approaches to convex feasibility problems in Banach spaces , 2006 .

[11]  C. Byrne,et al.  A unified treatment of some iterative algorithms in signal processing and image reconstruction , 2003 .

[12]  R. Wittmann Approximation of fixed points of nonexpansive mappings , 1992 .

[13]  Hong-Kun Xu,et al.  Strong convergence of the CQ method for fixed point iteration processes , 2006 .

[14]  S. Reich,et al.  Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings , 1984 .

[15]  Paranjothi Pillay,et al.  Iterative approaches to finding nearest common fixed points of nonexpansive mappings in Hilbert spaces , 2003 .

[16]  S. Reich Weak convergence theorems for nonexpansive mappings in Banach spaces , 1979 .

[17]  Wataru Takahashi,et al.  Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces , 1997 .

[18]  Hong-Kun Xu,et al.  Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process , 1993 .

[19]  Hong-Kun Xu,et al.  Fixed point iteration processes for asymptotically nonexpansive mappings , 1994 .

[20]  Wataru Takahashi,et al.  Strong Convergence of a Proximal-Type Algorithm in a Banach Space , 2002, SIAM J. Optim..

[21]  B. Halpern Fixed points of nonexpanding maps , 1967 .

[22]  S. Reich Strong convergence theorems for resolvents of accretive operators in Banach spaces , 1980 .

[23]  Benar Fux Svaiter,et al.  Forcing strong convergence of proximal point iterations in a Hilbert space , 2000, Math. Program..

[24]  Heinz H. Bauschke The Approximation of Fixed Points of Compositions of Nonexpansive Mappings in Hilbert Space , 1996 .

[25]  P. Lions Approximation de Points Fixes de Contractions , 1977 .

[26]  W. Takahashi,et al.  Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups , 2003 .

[27]  Osman Güer On the convergence of the proximal point algorithm for convex minimization , 1991 .

[28]  S. Ishikawa Fixed points by a new iteration method , 1974 .

[29]  Giuseppe Marino,et al.  WEAK AND STRONG CONVERGENCE THEOREMS FOR STRICT PSEUDO-CONTRACTIONS IN HILBERT SPACES , 2007 .

[30]  J. Lindenstrauss,et al.  An example concerning fixed points , 1975 .