Environmental noise impact on regularity and extinction of population systems with infinite delay

[1]  T. Gard,et al.  Stability for multispecies population models in random environments , 1986 .

[2]  Yong Xu,et al.  Stochastic Lotka--Volterra Population Dynamics with Infinite Delay , 2009, SIAM J. Appl. Math..

[3]  P. Turchin [Does population ecology have general laws?]. , 2001, Zhurnal obshchei biologii.

[4]  Xuerong Mao,et al.  Stochastic delay Lotka-Volterra model , 2004 .

[5]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[6]  T. Gard Persistence in stochastic food web models , 1984 .

[7]  Zhidong Teng,et al.  Persistence in nonautonomous predator-prey systems with infinite delays , 2006 .

[8]  M. Garrido-Atienza,et al.  RANDOM DIFFERENTIAL EQUATIONS WITH RANDOM DELAYS , 2011 .

[9]  X. Mao,et al.  Exponential Stability of Stochastic Di erential Equations , 1994 .

[10]  G. Yin,et al.  On competitive Lotka-Volterra model in random environments , 2009 .

[11]  X. Mao,et al.  Environmental Brownian noise suppresses explosions in population dynamics , 2002 .

[12]  Xuerong Mao DELAY POPULATION DYNAMICS AND ENVIRONMENTAL NOISE , 2005 .

[13]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[14]  Y. Kuang Delay Differential Equations: With Applications in Population Dynamics , 2012 .

[15]  Ke Wang,et al.  The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay , 2007 .

[16]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[17]  Xuerong Mao,et al.  Stochastic differential delay equations of population dynamics , 2005 .

[18]  Xue-Zhong He The Lyapunov Functionals for Delay Lotka-Volterra-Type Models , 1998, SIAM J. Appl. Math..

[19]  Xuerong Mao,et al.  Stochastic population dynamics under regime switching II , 2007 .

[20]  Fuke Wu,et al.  Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system , 2010 .

[21]  Yong Xu,et al.  Stochastic Lotka-Volterra system with infinite delay , 2009, J. Comput. Appl. Math..

[22]  I. Győri,et al.  Global Asymptotic Stability in a Nonautonomous Lotka–Volterra Type System with Infinite Delay , 1997 .

[23]  Xinzhu Meng,et al.  Periodic solution and almost periodic solution for a nonautonomous Lotka–Volterra dispersal system with infinite delay , 2008 .

[24]  Fuke Wu,et al.  Stochastic functional Kolmogorov-type population dynamics , 2008 .

[25]  X. Mao,et al.  Stochastic Differential Equations and Applications , 1998 .

[26]  S. Zacks,et al.  Introduction to stochastic differential equations , 1988 .

[27]  G. Yin,et al.  On hybrid competitive Lotka–Volterra ecosystems , 2009 .

[28]  A. Leung,et al.  Global stability for large systems of Volterra-Lotka type integrodifferential population delay equations , 1988 .

[29]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[30]  Yang Kuang,et al.  Global stability for infinite delay Lotka-Volterra type systems , 1993 .