Optical properties of potential condensates in exoplanetary atmospheres

The prevalence of clouds in currently observable exoplanetary atmospheres motivates the compilation and calculation of their optical properties. First, we present a new open-source Mie scattering code known as LX-MIE, which is able to consider large size parameters ($\sim 10^7$) using a single computational treatment. We validate LX-MIE against the classical MIEV0 code as well as previous studies. Second, we embark on an expanded survey of the published literature for both the real and imaginary components of the refractive indices of 32 condensate species. As much as possible, we rely on experimental measurements of the refractive indices and resort to obtaining the real from the imaginary component (or vice versa), via the Kramers-Kronig relation, only in the absence of data. We use these refractive indices as input for LX-MIE to compute the absorption, scattering and extinction efficiencies of all 32 condensate species. Finally, we use a three-parameter function to provide convenient fits to the shape of the extinction efficiency curve. We show that the errors associated with these simple fits in the Wide Field Camera 3 (WFC3), J, H and K wavebands are $\sim 10\%$. These fits allow for the extinction cross section or opacity of the condensate species to be easily included in retrieval analyses of transmission spectra. We discuss prospects for future experimental work. The compilation of the optical constants and LX-MIE are publicly available as part of the open-source Exoclime Simulation Platform (this http URL).

[1]  K. Heng,et al.  ATMOSPHERIC RETRIEVAL ANALYSIS OF THE DIRECTLY IMAGED EXOPLANET HR 8799b , 2013, 1307.1404.

[2]  C. Moutou,et al.  Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the Hubble Space Telescope , 2007, 0712.1374.

[3]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[4]  Franz Kerschbaum,et al.  Infrared Properties of Solid Titanium Oxides: Exploring Potential Primary Dust Condensates , 2003 .

[5]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[6]  S. Zeidler,et al.  Optical constants of refractory oxides at high temperatures - Mid-infrared properties of corundum, spinel, and α-quartz, potential carriers of the 13 μm feature , 2013, 1304.1717.

[7]  J. Dave,et al.  Coefficients of the legendre and fourier series for the scattering functions of spherical particles. , 1970, Applied optics.

[8]  V. E. Cachorro,et al.  New Improvements for Mie Scattering Calculations , 1991 .

[9]  Th. Henning,et al.  Steps toward interstellar silicate mineralogy - VII. Spectral properties and crystallization behaviour of magnesium silicates produced by the sol-gel method , 2003 .

[10]  Th. Henning,et al.  Steps toward interstellar silicate mineralogy - VI. Dependence of crystalline olivine IR spectra on iron content and particle shape , 2001 .

[11]  H. Rauer,et al.  Clouds in the atmospheres of extrasolar planets - I. Climatic effects of multi-layered clouds for Earth-like planets and implications for habitable zones , 2010, 1002.2927.

[12]  Th. Henning,et al.  Aluminum Oxide and the Opacity of Oxygen-rich Circumstellar Dust in the 12-17 Micron Range , 1997 .

[13]  Drake Deming,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2016, Nature.

[14]  Petr Chýlekt,et al.  Light scattering by small particles in an absorbing medium , 1977 .

[15]  D. Huffman,et al.  Optical Properties of a-MnS , 1967 .

[16]  W. Wiscombe Improved Mie scattering algorithms. , 1980, Applied optics.

[17]  R. Trotta,et al.  Retrieval Analysis of the Emission Spectrum of WASP-12b: Sensitivity of Outcomes to Prior Assumptions and Implications for Formation History , 2017, 1709.00338.

[18]  Nikku Madhusudhan,et al.  On signatures of clouds in exoplanetary transit spectra , 2017, 1705.08893.

[19]  A. Colaprete,et al.  Carbon dioxide clouds in an early dense Martian atmosphere , 2002 .

[20]  H. Hosono,et al.  Vacuum ultraviolet reflectance and electron energy loss spectra of , 1998 .

[21]  M. Marley,et al.  Clouds and Hazes in Exoplanet Atmospheres , 2013, 1301.5627.

[22]  M. Bonnefoy,et al.  HELIOS–RETRIEVAL: An Open-source, Nested Sampling Atmospheric Retrieval Code; Application to the HR 8799 Exoplanets and Inferred Constraints for Planet Formation , 2016, 1610.03216.

[23]  B. Draine Scattering by Interstellar Dust Grains. I. Optical and Ultraviolet , 2003, astro-ph/0304060.

[24]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[25]  H. Du,et al.  Mie-scattering calculation. , 2004, Applied optics.

[26]  B. Ercolano,et al.  A simple model for the evolution of the dust population in protoplanetary disks , 2012, 1201.5781.

[27]  V. Lucarini Kramers-Kronig relations in optical materials research , 2005 .

[28]  Giada Arney,et al.  The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth , 2016, Astrobiology.

[29]  T. Henning,et al.  Formation and spectroscopy of carbides. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[30]  Adriana Szeghalmi,et al.  Materials Pushing the Application Limits of Wire Grid Polarizers further into the Deep Ultraviolet Spectral Range , 2016, 1607.04866.

[31]  John Rarity,et al.  Progress in Electromagnetics Research Symposium , 2013 .

[32]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[33]  C. Benoit,et al.  Optical Constants of Sodium Sulphide , 1979, April 16.

[34]  W J Lentz,et al.  Generating bessel functions in mie scattering calculations using continued fractions. , 1976, Applied optics.

[35]  A. Bouhemadou,et al.  FP-APW+lo calculations of the electronic and optical properties of alkali metal sulfides under pressure , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  K. Heng A CLOUDINESS INDEX FOR TRANSITING EXOPLANETS BASED ON THE SODIUM AND POTASSIUM LINES: TENTATIVE EVIDENCE FOR HOTTER ATMOSPHERES BEING LESS CLOUDY AT VISIBLE WAVELENGTHS , 2016, 1606.07218.

[37]  I. P. Waldmann,et al.  A Population Study of Gaseous Exoplanets , 2017, 1704.05413.

[38]  Rudolf O. Müller,et al.  Absorption and Scattering of X-Rays , 1972 .

[39]  Hannah R. Wakeford,et al.  Transmission spectral properties of clouds for hot Jupiter exoplanets , 2014, 1409.7594.

[40]  W. Thi,et al.  Dust in brown dwarfs and extra-solar planets - I. Chemical composition and spectral appearance of quasi-static cloud layers , 2008, 0803.4315.

[41]  Tom Rother,et al.  Electromagnetic Wave Scattering on Nonspherical Particles , 2009 .

[42]  M. Manga,et al.  Increased stream discharge after the 3 September 2016 Mw 5.8 Pawnee, Oklahoma earthquake , 2016 .

[43]  Miyahara,et al.  Optical study of the stoichiometry-dependent electronic structure of TiCx, VCx, and NbCx. , 1990, Physical review. B, Condensed matter.

[44]  L. Infeld The influence of the width of the gap upon the theory of antennas , 1947 .

[45]  R. Kronig On the Theory of Dispersion of X-Rays , 1926 .

[46]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[47]  Raymond T. Pierrehumbert,et al.  Principles of Planetary Climate: Radiative transfer in temperature-stratified atmospheres , 2010 .

[48]  J. Pollack,et al.  Composition and radiative properties of grains in molecular clouds and accretion disks , 1994 .

[49]  D. Saumon,et al.  NEGLECTED CLOUDS IN T AND Y DWARF ATMOSPHERES , 2012, 1206.4313.

[50]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[51]  M. W. Williams,et al.  Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft x-ray to microwave frequencies , 1984 .

[52]  H. Shibai,et al.  Extinction spectra of corundum in the wavelengths from UV to FIR. , 1995 .

[53]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[54]  Andreas Seifahrt,et al.  A Search for Water in the Atmosphere of HAT-P-26b Using LDSS-3C , 2015 .

[55]  C. Mordasini,et al.  Grain opacity and the bulk composition of extrasolar planets. II. An analytical model for the grain opacity in protoplanetary atmospheres , 2014, 1406.4127.

[56]  S. Zeidler,et al.  Near-infrared absorption properties of oxygen-rich stardust analogs. The influence of coloring metal ions , 2011, 1101.0695.

[57]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[58]  Ari Laor,et al.  Spectroscopic constraints on the properties of dust in active galactic nuclei , 1993 .