The finite sample properties of simultaneous equations' estimates and estimators Bayesian and non-Bayesian approaches

Abstract After discussing the need for good finite sample estimation procedures for simultaneous equations models and showing the inadequacies of asymptotically justified estimators, it is shown how the Bayesian method of moments (BMOM) provides an exact, finite sample analysis of unrestricted reduced form systems. Then optimal, finite sample estimates of structural coefficients are derived using three standard loss functions and they are compared to traditional Bayesian optimal estimates. Monte Carlo experimental evidence from four studies on the relative performance of Bayesian and non-Bayesian estimators is reviewed with the finding that the performance of Bayesian estimators is better.

[1]  William E. Strawderman,et al.  A Bayesian growth and yield model for slash pine plantations , 1996 .

[2]  Arnold Zellner,et al.  Estimation of functions of population means and regression coefficients including structural coefficients : A minimum expected loss (MELO) approach , 1978 .

[3]  Arnold Zellner,et al.  Minimum Expected Loss (MELO) Estimators for Functions of Parameters and Structural Coefficients of Econometric Models , 1979 .

[4]  A. L. Nagar The Bias and Moment Matrix of the General k-Class Estimators of the Parameters in Simultaneous Equations , 1959 .

[5]  Arnold Zellner,et al.  Modelling and prediction : honoring Seymour Geisser , 1996 .

[6]  Christopher A. Sims,et al.  Advances in Econometrics , 1996 .

[7]  J. G. Cragg On the Relative Small-Sample Properties of Several Structural-Equation Estimators , 1967 .

[8]  Jacques H. Dreze,et al.  BAYESIAN ANALYSIS OF SIMULTANEOUS EQUATION SYSTEMS , 1983 .

[9]  R. L. Basmann A Note on the Exact Finite Sample Frequency Functions of Generalized Classical Linear Estimators in a Leading Three-Equation Case , 1963 .

[10]  Samuel Karlin,et al.  Studies in econometrics, time series, and multivariate statistics , 1983 .

[11]  J. Geweke Bayesian comparison of econometric models , 1994 .

[12]  A. Zellner Bayesian Estimation and Prediction Using Asymmetric Loss Functions , 1986 .

[13]  Rodney W. Johnson,et al.  Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.

[14]  Arnold Zellner,et al.  Bayesian Analysis of Regression Error Terms , 1975 .

[15]  Arnold Zellner,et al.  Bayesian regression diagnostics with applications to international consumption and income data , 1985 .

[16]  A. Zellner CANONICAL REPRESENTATION OF LINEAR STRUCTURAL ECONOMETRIC MODELS, RANK TESTS FOR IDENTIFICATION AND EXISTENCE OF ESTIMATORS' MOMENTS , 1983 .

[17]  Richard A. Highfield,et al.  Calculation of maximum entropy distributions and approximation of marginalposterior distributions , 1988 .

[18]  R. L. Basmann A Note on the Exact Finite Sample Frequency Functions of Generalized Classical Linear Estimators in Two Leading Over-Identified Cases , 1961 .

[19]  E. Soofi Capturing the Intangible Concept of Information , 1994 .

[20]  P. A. V. B. Swamy,et al.  Further Results on Zellner's Minimum Expected Loss and Full Information Maximum Likelihood Estimators for Undersized Samples , 1983 .

[21]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[22]  P. Jagers,et al.  Studies in Bayesian econometrics and statistics: S.E. Fienberg and A. Zellner, eds., In honor of Leonard J. Savage (North-Holland, Amsterdam, 1975) , 1977 .

[23]  K. Chaloner,et al.  A Bayesian approach to outlier detection and residual analysis , 1988 .

[24]  S. Gupta,et al.  Statistical decision theory and related topics IV , 1988 .

[25]  Arnold Zellner,et al.  Models, prior information, and Bayesian analysis☆ , 1996 .

[26]  A. Bergstrom THE EXACT SAMPLING DISTRIBUTIONS OF LEAST SQUARES AND MAXIMUM LIKELIHOOD ESTIMATORS OF THE MARGINAL PROPENSITY TO CONSUME , 1962 .

[27]  A note on a Bayesian estimator in an autocorrelated error model , 1980 .

[28]  Peter C. B. Phillips,et al.  Exact Small Sample Theory in the Simultaneous Equations Model , 1983 .

[29]  T. Sawa The mean square error of a combined estimator and numerical comparison with the TSLS estimator , 1973 .

[30]  D. Poirier A Return to the Battlefront , 1992 .

[31]  F. Diebold,et al.  Why Are Estimates of Agricultural Supply Response So Variable , 1996 .

[32]  Arnold Zellner,et al.  Bayesian specification analysis and estimation of simultaneous equation models using Monte Carlo methods , 1988 .

[33]  Tjalling C. Koopmans,et al.  Studies in Econometric Method , 1954 .

[34]  Wayne A. Fuller,et al.  Some Properties of a Modification of the Limited Information Estimator , 1977 .

[35]  W. R. Buckland,et al.  Econometric Models and Methods , 1967 .

[36]  T. Kloek,et al.  Bayesian estimates of equation system parameters, An application of integration by Monte Carlo , 1976 .

[37]  H. Theil Principles of econometrics , 1971 .

[38]  Soo-Bin Park,et al.  Some sampling properties of minimum expected loss (MELO) estimators of structural coefficients , 1982 .

[39]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[40]  A. Zellner A Note on the Relationship of Minimum Expected Loss (MELO) and Other Structural Coefficient Estimates , 1980 .

[41]  T. Sawa Finite-Sample Properties of the k-Class Estimators , 1972 .

[42]  Arnold Zellner,et al.  Bayesian and Non-Bayesian Estimation Using Balanced Loss Functions , 1994 .

[43]  Tjalling C. Koopmans,et al.  Identification problems in economic model construction , 1949 .

[44]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[45]  G. Judge,et al.  The Theory and Practice of Econometrics , 1981 .

[46]  John Geweke,et al.  Monte carlo simulation and numerical integration , 1995 .

[47]  C. Christ,et al.  The Cowles Commission's Contributions to Econometrics at Chicago, 1939-1955 , 1994 .

[48]  C. Christ A Symposium on Simultaneous Equation Estimation: Simultaneous Equation Estimation: Any Verdict Yet? , 1960 .

[49]  Richard Startz,et al.  Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator , 1988 .