Modeling Frequency Independent Hysteresis Effects of Ferrite Core Materials Using Permeance–Capacitance Analogy for System-Level Circuit Simulations

Ferrite materials are widely used for magnetic cores in power electronic converters. The hysteresis effect of the material leads to power loss and harmonic distortion. In order to predict the behavior of the magnetic component in the system environment during the design phase, accurate system-level time-domain simulation is desired. This paper proposes an approach to model the frequency-independent magnetic hysteresis effect of ferrite core materials in magnetic circuits based on the permeance–capacitance analogy. The model is able to accurately reproduce the per-cycle energy loss and equivalent permeability of the hysteresis loops under excitation in a wide range of amplitudes.

[1]  E. Della Torre,et al.  Identification of the Preisach probability functions for soft magnetic materials , 2001 .

[2]  E. Cardelli,et al.  Increasing the accuracy of the numerical identification of the modified scalar Preisach model , 2004, IEEE Transactions on Magnetics.

[3]  G. Bertotti,et al.  Dependence of power losses on peak magnetization and magnetization frequency in grain-oriented and non-oriented 3% SiFe , 1987 .

[4]  Drazen Dujic,et al.  Leakage Flux Modeling of Multiwinding Transformers for System-Level Simulations , 2018, IEEE Transactions on Power Electronics.

[5]  I. Mayergoyz Mathematical models of hysteresis and their applications , 2003 .

[6]  B. Azzerboni,et al.  About identification of Scalar Preisach functions of soft magnetic materials , 2006, IEEE Transactions on Magnetics.

[7]  V. S. Ramsden,et al.  A dynamic equivalent circuit model for solid magnetic cores for high switching frequency operations , 1995 .

[8]  J. W. Kolar,et al.  Improved Core-Loss Calculation for Magnetic Components Employed in Power Electronic Systems , 2012, IEEE Transactions on Power Electronics.

[9]  D. Jiles,et al.  Ferromagnetic hysteresis , 1983 .

[10]  C. Perez-Rojas Fitting saturation and hysteresis via arctangent functions , 2000 .

[11]  B. Lehman,et al.  A capacitor modeling method for integrated magnetic components in DC/DC converters , 2005, IEEE Transactions on Power Electronics.

[12]  Hanen Mejbri,et al.  An Improved Empirical Formulation for Magnetic Core Losses Estimation Under Nonsinusoidal Induction , 2017, IEEE Transactions on Power Electronics.

[13]  D. Jiles,et al.  Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis , 1992 .

[14]  S. R. Naidu,et al.  Simulation of the hysteresis phenomenon using Preisach's theory , 1990 .

[15]  Dra ˘ zen Permeance Based Modelling of the Core Corners Considering Magnetic Material Nonlinearity , 2015 .

[16]  Slobodan Cuk,et al.  A practical approach for magnetic core-loss characterization , 1995 .

[17]  E. Della Torre,et al.  Preisach modeling and reversible magnetization , 1990 .

[18]  V. S. Ramsden,et al.  A generalized dynamic circuit model of magnetic cores for low- and high-frequency applications. II. Circuit model formulation and implementation , 1996 .

[19]  B. Phelps,et al.  Macroscopic models of magnetization , 2000 .

[20]  David C. Hamill,et al.  Lumped equivalent circuits of magnetic components: the gyrator-capacitor approach , 1993 .

[21]  J. Allmeling,et al.  Transient simulation of magnetic circuits using the permeance-capacitance analogy , 2012, 2012 IEEE 13th Workshop on Control and Modeling for Power Electronics (COMPEL).

[22]  Bruno Azzerboni,et al.  Remarks about Preisach function approximation using Lorentzian function and its identification for nonoriented steels , 2003 .

[24]  A. Kedous-L,et al.  Application of Preisach Model to Grain (Oriented Steels : Comparison of Different Characterizations for the Preisach Function p(a, p) , 1995 .

[25]  Khai D. T. Ngo,et al.  A Hammerstein-based dynamic model for hysteresis phenomenon , 1997 .

[26]  D. H. Everett A general approach to hysteresis. Part 4. An alternative formulation of the domain model , 1955 .

[27]  R. Vecchio,et al.  An efficient procedure for modeling complex hysteresis processes in ferromagnetic materials , 1980 .

[28]  G. Finocchio,et al.  A genetic approach to solve numerical problems in the Preisach model identification , 2006, IEEE Transactions on Magnetics.