Evaluation of non-invasive genetic sampling methods for estimating tiger population size

Abstract There is often a conservation need to estimate population abundances of elusive, low-density, wide-ranging carnivore species. Because of logistical constraints, investigators often employ non-invasive ‘captures’ that may involve ‘genetic’ or ‘photographic’ sampling in such cases. Established capture–recapture (CR) methods offer a powerful analytical tool for such data. In this paper, we developed a rigorous combination of captive, laboratory and field-based protocols for identifying individual tigers (Panthera tigris) from fecal DNA. We explored trade-offs between numbers of microsatellite loci used for reliable individual identifications and the need for higher capture rates for robust analyses. Our field surveys of scats were also specifically designed for CR analyses, enabling us to test for population closure, estimate capture probabilities and tiger abundance. Consequently, we could compare genetic capture estimates to results of a ‘photographic capture’ study of tigers at the same site. The estimates using the heterogeneity model (Mh-Jackknife) for fecal DNA survey were [Mt+1 = 26; p ¯ ˆ = 0.09 and N ˆ ( S E ˆ [ N ˆ ] )=66 (12.98)] in close agreement with those from the photographic survey [(Mt+1 = 29; p ¯ ˆ = 0.04 and N ˆ ( S E ˆ [ N ˆ ] ) = 66 (13.8)]. Our results revealed that designing field surveys of scats explicitly for CR data analyses generate reliable estimates of capture probability and abundance for elusive, low density species such as tigers. The study also highlights the importance of rigorous field survey and laboratory protocols for reliable abundance estimation in contexts where other approaches such as camera-trapping or physical tagging of animals may not be practical options.

[1]  James D Nichols,et al.  Assessing tiger population dynamics using photographic capture-recapture sampling. , 2006, Ecology.

[2]  E. Petit,et al.  Estimating Population Size with Noninvasive Capture‐Mark‐Recapture Data , 2006, Conservation biology : the journal of the Society for Conservation Biology.

[3]  E. Petit,et al.  Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates , 2006, Conservation Genetics.

[4]  S. Breck Book Review: Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters , 2006 .

[5]  E. Louis,et al.  Development and cross‐species amplification of 18 microsatellite markers in the Sumatran tiger (Panthera tigris sumatrae) , 2002 .

[6]  J Andrew Royle,et al.  A hierarchical model for spatial capture-recapture data. , 2008, Ecology.

[7]  Michael K. Schwartz,et al.  ESTIMATING ANIMAL ABUNDANCE USING NONINVASIVE DNA SAMPLING: PROMISE AND PITFALLS , 2000 .

[8]  P. Lukacs,et al.  Review of capture–recapture methods applicable to noninvasive genetic sampling , 2005, Molecular ecology.

[9]  M. A. Sloane,et al.  Highly reliable genetic identification of individual northern hairy‐nosed wombats from single remotely collected hairs: a feasible censusing method , 2000, Molecular ecology.

[10]  Nathaniel Valière gimlet: a computer program for analysing genetic individual identification data , 2002 .

[11]  V. Morell Can the Wild Tiger Survive? , 2007, Science.

[12]  G. Stenhouse,et al.  Scat detection dogs in wildlife research and management: application to grizzly and black bears in the Yellowhead ecosystem, Alberta, Canada , 2004 .

[13]  Pierre Taberlet,et al.  An evaluation of field and non-invasive genetic methods to estimate brown bear (Ursus arctos) population size , 2006 .

[14]  Bruce D. Patterson,et al.  The Status of the World's Land and Marine Mammals: Diversity, Threat, and Knowledge , 2008, Science.

[15]  K. U. Karanth,et al.  Behavioural correlates of predation by tiger (Panthera tigris), leopard (Panthera pardus) and dhole (Cuon alpinus) in Nagarahole, India , 2000 .

[16]  KEVIN S. MCKELVEY,et al.  PROVIDING RELIABLE AND ACCURATE GENETIC CAPTURE–MARK–RECAPTURE ESTIMATES IN A COST-EFFECTIVE WAY , 2004 .

[17]  L. Waits,et al.  NONINVASIVE GENETIC SAMPLING TOOLS FOR WILDLIFE BIOLOGISTS: A REVIEW OF APPLICATIONS AND RECOMMENDATIONS FOR ACCURATE DATA COLLECTION , 2005 .

[18]  T. J. Roper,et al.  Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA , 2003, Molecular ecology.

[19]  M. Conroy,et al.  Analysis and Management of Animal Populations , 2002 .

[20]  J. Nichols,et al.  Photographic sampling of elusive mammals in tropical forests , 2004 .

[21]  T. Roper,et al.  Estimating population size by genotyping remotely plucked hair: the Eurasian badger , 2004 .

[22]  M. Buoncristiani,et al.  Optimization of DNA Extraction from Low‐Yield and Degraded Samples Using the BioRobot® EZ1 and BioRobot® M48 , 2006, Journal of forensic sciences.

[23]  S. Pledger Unified Maximum Likelihood Estimates for Closed Capture–Recapture Models Using Mixtures , 2000, Biometrics.

[24]  Marc Kéry,et al.  ESTIMATION OF OCELOT DENSITY IN THE PANTANAL USING CAPTURE–RECAPTURE ANALYSIS OF CAMERA-TRAPPING DATA , 2003 .

[25]  James L. D. Smith,et al.  Where can tigers persist in the future? A landscape-scale, density-based population model for the Indian subcontinent , 2008 .

[26]  S. Puechmaille,et al.  Empirical evaluation of non‐invasive capture–mark–recapture estimation of population size based on a single sampling session , 2007 .

[27]  Henrik Brøseth,et al.  Colonization History and Noninvasive Monitoring of a Reestablished Wolverine Population , 2004 .

[28]  U. Ramakrishnan,et al.  Rapid multiplex PCR based species identification of wild tigers using non-invasive samples , 2007, Conservation Genetics.

[29]  D. Woodruff,et al.  Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana , 2003, Molecular ecology.

[30]  J. DeWoody,et al.  A non-invasive genetic evaluation of population size, natal philopatry, and roosting behavior of non-breeding eastern imperial eagles (Aquila heliaca) in central Asia , 2008, Conservation Genetics.

[31]  P. Taberlet,et al.  Quality indexes to assess the reliability of genotypes in studies using noninvasive sampling and multiple‐tube approach , 2006 .

[32]  David R. Anderson,et al.  Capture-Recapture and Removal Methods for Sampling Closed Populations , 1983 .

[33]  T. Roper,et al.  Estimation of badger abundance using faecal DNA typing , 2003 .

[34]  A A Schäffer,et al.  A genetic linkage map of microsatellites in the domestic cat (Felis catus). , 1999, Genomics.

[35]  G. Mowat,et al.  Estimating marten Martes americana population size using hair capture and genetic tagging , 2002, Wildlife Biology.

[36]  M. Stine,et al.  Abundance, genetic diversity and conservation of Louisiana black bears (Ursus americanus luteolus) as detected through noninvasive sampling , 2004, Conservation Genetics.

[37]  S. Banks,et al.  Estimating population size of endangered brush‐tailed rock‐wallaby (Petrogale penicillata) colonies using faecal DNA , 2005, Molecular ecology.

[38]  L. Waits,et al.  Estimating the probability of identity among genotypes in natural populations: cautions and guidelines , 2001, Molecular ecology.

[39]  K. Burnham,et al.  Program MARK: survival estimation from populations of marked animals , 1999 .

[40]  Bryan F. J. Manly,et al.  Handbook of Capture-Recapture Analysis , 2010 .

[41]  James L. D. Smith,et al.  Phylogeography and Genetic Ancestry of Tigers (Panthera tigris) , 2004, PLoS biology.

[42]  Zhihe Zhang,et al.  Twelve polymorphic microsatellite loci for the South China tiger Panthera tigris amoyensis , 2006 .

[43]  J. Andrew Royle,et al.  A hierarchical model for estimating density in camera‐trap studies , 2009 .

[44]  Xiao Ping Li,et al.  Individualization of tiger by using microsatellites. , 2005, Forensic science international.

[45]  L. Waits,et al.  An evaluation of long-term preservation methods for brown bear (Ursus arctos) faecal DNA samples , 2002, Conservation Genetics.

[46]  James D. Nichols,et al.  How many tigers Panthera tigris are there in Huai Kha Khaeng Wildlife Sanctuary, Thailand? An estimate using photographic capture-recapture sampling , 2007, Oryx.

[47]  J. Nichols,et al.  Tigers and their prey: Predicting carnivore densities from prey abundance. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[48]  D L Borchers,et al.  Spatially Explicit Maximum Likelihood Methods for Capture–Recapture Studies , 2008, Biometrics.

[49]  S. Creel,et al.  Population size estimation in Yellowstone wolves with error‐prone noninvasive microsatellite genotypes , 2003, Molecular ecology.

[50]  D. McCullough,et al.  Fecal genetic analysis using PCR-RFLP of cytochrome b to identify sympatric carnivores, the tiger Panthera tigris and the leopard Panthera pardus, in far eastern Russia , 2005, Conservation Genetics.

[51]  Andrew J. Noss,et al.  The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis , 2004, Oryx.

[52]  J. Birks,et al.  On the origin of faeces: morphological versus molecular methods for surveying rare carnivores from their scats , 2002 .

[53]  C. Krebs,et al.  Monitoring coyote population dynamics by genotyping faeces , 2005, Molecular ecology.

[54]  Per Wegge,et al.  Effects of trapping effort and trap shyness on estimates of tiger abundance from camera trap studies , 2004 .

[55]  R. Wayne,et al.  Estimating population size by genotyping faeces , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[56]  James L. D. Smith,et al.  Scent marking in free-ranging tigers,Panthera tigris , 1989, Animal Behaviour.

[57]  David R. Anderson,et al.  Statistical inference from capture data on closed animal populations , 1980 .

[58]  K. Ullas Karanth,et al.  Estimating tiger Panthera tigris populations from camera-trap data using capture-recapture models , 1995 .

[59]  Craig R. Miller,et al.  A new method for estimating the size of small populations from genetic mark–recapture data , 2005, Molecular ecology.

[60]  Sam C. Banks,et al.  Wombat coprogenetics: enumerating a common wombat population by microsatellite analysis of faecal DNA , 2002 .

[61]  LINDA L. KERLEY,et al.  Using Scent-Matching Dogs to Identify Individual Amur Tigers from Scats , 2007 .

[62]  Brian P. Dreher,et al.  Noninvasive Estimation of Black Bear Abundance Incorporating Genotyping Errors and Harvested Bear , 2007 .

[63]  Ming Li,et al.  Molecular censusing doubles giant panda population estimate in a key nature reserve , 2006, Current Biology.

[64]  Kae Kawanishi,et al.  Conservation status of tigers in a primary rainforest of Peninsular Malaysia , 2004 .

[65]  J. Nichols,et al.  ESTIMATION OF TIGER DENSITIES IN INDIA USING PHOTOGRAPHIC CAPTURES AND RECAPTURES , 1998 .

[66]  L. Singh,et al.  Genotyping faecal samples of Bengal tiger Panthera tigris tigris for population estimation: A pilot study , 2006, BMC Genetics.

[67]  U. Hohmann,et al.  A methodological approach for non-invasive sampling for population size estimates in wild boars (Sus scrofa) , 2006, European Journal of Wildlife Research.

[68]  K. Burnham,et al.  Estimation of the size of a closed population when capture probabilities vary among animals , 1978 .

[69]  J. D. Clark,et al.  Estimating black bear population density and genetic diversity at Tensas River, Louisiana using microsatellite DNA markers , 2003 .

[70]  T. C. Marshall,et al.  Statistical confidence for likelihood‐based paternity inference in natural populations , 1998, Molecular ecology.

[71]  K. Burnham,et al.  A closure test for time-specific capture-recapture data , 1999, Environmental and Ecological Statistics.

[72]  Pierre Taberlet,et al.  Non-invasive genetic sampling and individual identification , 1999 .