PERANCANGAN KONTROL OPTIMAL PADA SISTEM MULTI MACHINE MENGGUNAKAN LINEAR QUADRATIC REGULATOR-GLOWWORM SWARM OPTIMIZATION (LQR-GSO)

Abstrak Stabilitas pada sistem multi machine merupakan faktor penting untuk menjaga operasional sistem agar tetap aman. Perancangan kontrol optimal pada sistem multi machine menggunakan Linear Quadratic Regulator (LQR) diharapkan mampu meningkatkan stabilitas sistem multi machine . Pada penelitian ini, nilai variabel diagonal matriks bobot Q dan R pada LQR  dihitung menggunakan Glowworm Swarm Optimization (GSO). Model persamaan state space dan data parameter pada sistem multi machine didapat dari studi pustaka, yaitu jurnal dan buku. Sedangkan untuk implementasi kontrol optimal pada sistem multi machine dilakukan dengan menggunakan MATLAB. Hasil simulasi yang diperoleh yaitu perbandingan antara respon sistem multi machine yang menggunakan kontrol LQR-GSO dengan LQR. Berdasarkan pengujian yang dilakukan, kontrol LQR-GSO pada multi machine memperkecil error sebanyak 32.95% sedangkan kontrol LQR pada multi machine memperkecil error sebanyak 28.87%. Oleh sebab itu, metode kontrol LQR-GSO memiliki respon yang lebih baik dibandingkan metode kontrol LQR. Kata kunci: stabilitas, multi machine, Linear Quadratic Regulator (LQR), Glowworm Swarm Optimization (GSO) Abstract Multi machine system stability is an important factor to keep the system operational in order to stay safe. The design of optimal control in multi machine system using Linear Quadratic Regulator (LQR) is expected to improve the stability of multi machine system. In this research, the value of the variable diagonal weighting matrix Q and R on LQR calculated using Glowworm Swarm Optimization (GSO). State space equation model and data parameters in a multi machine system obtained from the literature. Implementation of optimal control in multi machine system performed using MATLAB. Simulation results obtained by the comparison between the response of multi machine system using LQR control and LQR-GSO control. Based on the tests, the LQR-GSO control in multi machine reduce as much as 32.95% error and the LQR control in multi machine reduce as much as 28.87% error. Therefore, the LQR-GSO control method has a better response than the LQR control method. Keywords: stability, multi machine, Linear Quadratic Regulator (LQR), Glowworm Swarm Optimization (GSO)

[1]  M. A. Abido,et al.  Robust design of multimachine power system stabilizers using simulated annealing , 2000 .

[2]  P. Kundur,et al.  Power system stability and control , 1994 .

[3]  Debasish Ghose,et al.  Theoretical foundations for rendezvous of glowworm-inspired agent swarms at multiple locations , 2008, Robotics Auton. Syst..

[4]  J. Hamidi Control System Design Using Particle Swarm Optimization (PSO) , 2012 .

[5]  Yao-nan Yu,et al.  Dynamic Interaction of Multi-Machine Power System and Excitation Control , 1974 .

[6]  Takashi Hiyama,et al.  Robust PID based power system stabiliser: Design and real-time implementation , 2011 .

[7]  Zwe-Lee Gaing,et al.  A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004 .

[8]  M. Pai Energy function analysis for power system stability , 1989 .

[9]  M. A. Abido,et al.  Optimal Design of Power System Stabilizers Using Evolutionary Programming , 2002, IEEE Power Engineering Review.

[10]  M. A. Abido,et al.  Simultaneous stabilization of multimachine power systems via genetic algorithms , 1999, IEEE Transactions on Power Systems.

[11]  IEEE Report,et al.  Excitation System Models for Power System Stability Studies , 1981, IEEE Transactions on Power Apparatus and Systems.

[12]  Debasish Ghose,et al.  Glowworm swarm optimisation: a new method for optimising multi-modal functions , 2009, Int. J. Comput. Intell. Stud..

[13]  Mohammad Ali Abido,et al.  Robust tuning of power system stabilizers in multimachine power systems , 2000 .

[14]  H. Happ Power system control and stability , 1979, Proceedings of the IEEE.

[15]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[16]  Amin Safari,et al.  A robust PSSs design using PSO in a multi-machine environment , 2010 .

[17]  S. Abe,et al.  A New Power System Stabilizer Synthesis in Multimachine Power Systems , 1983, IEEE Power Engineering Review.

[18]  Bin Wu,et al.  The improvement of glowworm swarm optimization for continuous optimization problems , 2012, Expert Syst. Appl..

[19]  M. A. Abido,et al.  Optimal power flow using particle swarm optimization , 2002 .

[20]  Thomas Kailath,et al.  Linear Systems , 1980 .

[21]  Charles Concordia,et al.  Concepts of Synchronous Machine Stability as Affected by Excitation Control , 1969 .

[22]  Mohammad Ali Abido,et al.  Parameter optimization of multimachine power system conventional stabilizers using CDCARLA method , 2010 .

[23]  J. Nanda,et al.  Multi-machine power system stabilizer design by rule based bacteria foraging , 2007 .

[24]  Roland S. Burns,et al.  Advanced control engineering , 2001 .

[25]  Ji-Pyng Chiou,et al.  Parameters tuning of power system stabilizers using improved ant direction hybrid differential evolution , 2009 .

[26]  M. A. Abido,et al.  Robust tuning of power system stabilizers in multimachine power systems , 2000, 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.00CH37077).

[27]  Peter W. Sauer,et al.  Power System Dynamics and Stability , 1997 .

[28]  M. Grimble,et al.  Recent trends in linear optimal quadratic multivariable control system design , 1987 .

[29]  木村 秀政,et al.  DESIGN OF CONTROL SYSTEM , 1927 .