Three-party quantum secret sharing against collective noise

We present two robust three-party quantum secret sharing protocols against two kinds of collective noise. Each logical qubit is made up of two physical qubits and is invariant under a collective noise. The two agents encode their message on each logical qubit with two unitary physical operations on two physical qubits. As each logical qubit received by each agent can carry two bits of information and the classical information exchanged is reduced largely, these protocols have a high intrinsic efficiency. Moreover, the boss Alice can read out her agents' information with two Bell-state measurements on each four-qubit system, not four-photon joint measurements.

[1]  D. Bruß Optimal Eavesdropping in Quantum Cryptography with Six States , 1998, quant-ph/9805019.

[2]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[3]  Z. Man,et al.  Multiparty quantum secret sharing of classical messages based on entanglement swapping , 2004, quant-ph/0406103.

[4]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[5]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[6]  Wang Chuan,et al.  Quantum secure direct communication and deterministic secure quantum communication , 2007 .

[7]  Jie Song,et al.  Quantum state sharing using linear optical elements , 2008 .

[8]  Yu-Bo Sheng,et al.  Efficient and economic five-party quantum state sharing of an arbitrary m-qubit state , 2008, 1005.0034.

[9]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[10]  Fuguo Deng,et al.  Faithful qubit transmission against collective noise without ancillary qubits , 2007, 0708.0068.

[11]  Dongyao Ji,et al.  Analysis of a kind of quantum cryptographic schemes based on secret sharing , 2009 .

[12]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[13]  Fuguo Deng,et al.  Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs (4 pages) , 2005, quant-ph/0504158.

[14]  Christian Kurtsiefer,et al.  Complete deterministic linear optics Bell state analysis. , 2006, Physical review letters.

[15]  Zhong-Xiao Man,et al.  Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states , 2007 .

[16]  Ping Zhou,et al.  Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements , 2006 .

[17]  Zhan-jun Zhang,et al.  Multiparty quantum secret sharing , 2004, quant-ph/0412203.

[18]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[19]  Q. Cai Eavesdropping on the two-way quantum communication protocols with invisible photons , 2005, quant-ph/0508002.

[20]  Z.-J. Zhang,et al.  Three-party qutrit-state sharing , 2007 .

[21]  Jian-Wei Pan,et al.  Entanglement purification for quantum communication , 2000, Nature.

[22]  Ping Zhou,et al.  Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state , 2005, quant-ph/0511223.

[23]  Ting Gao,et al.  Addendum to "Quantum secret sharing between multiparty and multiparty without entanglement" , 2005 .

[24]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[25]  Xue Fei,et al.  High-capacity three-party quantum secret sharing with superdense coding , 2009 .

[26]  Zhang Shou,et al.  Secret sharing of quantum information via entanglement swapping , 2006 .

[27]  Qiao-Yan Wen,et al.  Threshold quantum secret sharing between multi-party and multi-party , 2008 .

[28]  Gan Gao,et al.  Reexamining the security of the improved quantum secret sharing scheme , 2009 .

[29]  Jian-Wei Pan,et al.  Polarization entanglement purification using spatial entanglement. , 2001, Physical review letters.

[30]  Chi-Yee Cheung Controlled quantum secret sharing , 2006 .

[31]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[32]  Fuguo Deng,et al.  Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity , 2008, 0805.0032.

[33]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[34]  Wang Yan,et al.  Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations , 2005 .

[35]  Yan Feng-li,et al.  Quantum Secret Sharing Protocol between Multiparty and Multiparty with Single Photons and Unitary Transformations , 2008 .

[36]  Hong-Yu Zhou,et al.  An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs , 2005 .

[37]  Ting Gao,et al.  Quantum secret sharing between m-party and n-party with six states , 2009 .

[38]  White,et al.  Entangled state quantum cryptography: eavesdropping on the ekert protocol , 1999, Physical review letters.

[39]  M. Teich,et al.  Decoherence-free subspaces in quantum key distribution. , 2003, Physical review letters.

[40]  H. Bechmann-Pasquinucci,et al.  Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography , 1998, quant-ph/9807041.

[41]  He-Shan Song,et al.  Preparation of multi-atom specially entangled W-class state and splitting quantum information , 2009 .

[42]  R. Laflamme,et al.  Robust polarization-based quantum key distribution over a collective-noise channel. , 2003, Physical review letters.

[43]  H. Briegel,et al.  Experimental demonstration of five-photon entanglement and open-destination teleportation , 2004, Nature.

[44]  Fuguo Deng,et al.  Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement , 2010 .

[45]  Yu-Bo Sheng,et al.  Fault tolerant quantum key distribution based on quantum dense coding with collective noise , 2009, 0904.0056.

[46]  Fuguo Deng,et al.  Improving the security of multiparty quantum secret sharing against Trojan horse attack , 2005, quant-ph/0506194.

[47]  Fuguo Deng,et al.  Improving the security of secure direct communication based on the secret transmitting order of particles , 2006, quant-ph/0612016.

[48]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[49]  Fuguo Deng,et al.  Bidirectional quantum secret sharing and secret splitting with polarized single photons , 2005, quant-ph/0504119.

[50]  Chuan Wang,et al.  Arbitrarily long distance quantum communication using inspection and power insertion , 2009 .

[51]  Deng Fu-Guo,et al.  Efficient Quantum Cryptography Network without Entanglement and Quantum Memory , 2006 .

[52]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[53]  Xi-Han Li,et al.  Efficient quantum key distribution over a collective noise channel (6 pages) , 2008, 0808.0042.

[54]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[55]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[56]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[57]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[58]  Fuguo Deng,et al.  Efficient high-capacity quantum secret sharing with two-photon entanglement , 2006, quant-ph/0602160.

[59]  K. Peng,et al.  Multiparty secret sharing of quantum information based on entanglement swapping , 2004 .

[60]  Dong Liu,et al.  Field experiment on a robust hierarchical metropolitan quantum cryptography network , 2009 .

[61]  Fuguo Deng,et al.  Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement , 2005, quant-ph/0501129.

[62]  Qiao-Yan Wen,et al.  Eavesdropping and Improvement to Multiparty Quantum Secret Sharing with Collective Eavesdropping-Check , 2009, International Journal of Theoretical Physics.