Transetherification-mediated E-ring opening and stereoselective “Red-Ox” modification of furostan

We have developed a novel E-ring opening method for furostan, and applied it to prepare D-ring modified steroids, which can be used to synthesize cephalostatin analogs.

[1]  Yoshiki Tanaka,et al.  Enantioselective synthesis of (+)-cephalostatin 1. , 2010, Journal of the American Chemical Society.

[2]  E. Winterfeldt,et al.  Synthesis of Cytostatic Tetradecacyclic Pyrazines and a Novel Reduction-Oxidation Sequence for Spiroketal Opening in Sapogenins , 2000 .

[3]  P. Fuchs,et al.  Redox refunctionalization of steroid spiroketals. Structure correction of ritterazine M. , 2002, Organic Letters.

[4]  P. Fuchs,et al.  Synthesis of C14,15-dihydro-C22,25-epi north unit of cephalostatin 1 via "red-ox" modifications of hecogenin acetate. , 2009, Organic Letters.

[5]  P. Fuchs,et al.  Efficient Protocol for Ring Opening of Spiroketals Using Trifluoroacetyl Trifluoromethanesulfonate (TFAT)1 , 2003 .

[6]  A. Vollmar,et al.  The cephalostatin way of apoptosis. , 2008, Journal of natural products.

[7]  T. G. Lacour,et al.  Consequences of acid catalysis in concurrent ring opening and halogenation of spiroketals. , 1999, Organic letters.

[8]  P. Fuchs,et al.  Chemistry of trisdecacyclic pyrazine antineoplastics: the cephalostatins and ritterazines. , 2009, Chemical reviews.

[9]  H. Duddeck,et al.  14β‐HYDROXY STEROIDS. II. PRINS REACTION OF LUMIHECOGENIN ACETATE , 1981 .

[10]  P. Welzel,et al.  Zur Prins‐Reaktion von Lumihecogeninacetat , 1981 .

[11]  A. Vollmar,et al.  Cephalostatin 1 Inactivates Bcl-2 by Hyperphosphorylation Independent of M-Phase Arrest and DNA Damage , 2005, Molecular Pharmacology.

[12]  J. A. Rabi,et al.  The clemmensen reaction of tigogenin. A reinvestigation , 1980 .

[13]  J. L. La Clair,et al.  Synthesis and evaluation of a fluorescent ritterazine-cephalostatin hybrid. , 2011, Organic letters.

[14]  P. Fuchs,et al.  Interphylal Product Splicing: The First Total Syntheses of Cephalostatin 1, the North Hemisphere of Ritterazine G, and the Highly Active Hybrid Analogue, Ritterostatin GN1N1 , 1998 .

[15]  P. Bladon,et al.  1093. Steroids derived from hecogenin. Part III. The photochemistry of hecogenin acetate , 1963 .

[16]  D. L. Herald,et al.  Isolation and structure of the powerful cell growth inhibitor cephalostatin 1 , 1988 .

[17]  E. Mincione,et al.  Sapogenins and dimethyldioxirane: A new entry to cholestanes functionalized at the side chain , 1994 .

[18]  D. Kingston,et al.  Bioactive steroidal alkaloids from Solanum umbelliferum. , 1996, Journal of natural products.

[19]  P. Fuchs,et al.  A biomimetically inspired, efficient synthesis of the South 7 hemisphere of cephalostatin 7. , 2005, Journal of the American Chemical Society.

[20]  John A. Tallarico,et al.  Natural products reveal cancer cell dependence on oxysterol-binding proteins. , 2011, Nature chemical biology.

[21]  S. Matsunaga,et al.  Ritterazine A, a highly cytotoxic dimeric steroidal alkaloid, from the tunicate Ritterella tokioka , 1994 .

[22]  P. Fuchs,et al.  Synthesis of the North 1 Unit of the Cephalostatin Family from Hecogenin Acetate1 , 1999 .

[23]  A. Vollmar,et al.  Role of Smac in cephalostatin-induced cell death , 2008, Cell Death and Differentiation.