Huffman Redundancy for Large Alphabet Sources

The performance of optimal prefix-free encoding for memoryless sources with a large alphabet size is studied. It is shown that the redundancy of the Huffman code for almost all sources with a large alphabet size n is very close to that of the average distribution of the monotone sources with n symbols. This value lies between 0.02873 and 0.02877 bit for sufficiently large n.

[1]  W. Rudin Principles of mathematical analysis , 1964 .

[2]  Gyula O. H. Katona,et al.  Huffman codes and self-information , 1976, IEEE Trans. Inf. Theory.

[3]  Alfredo De Santis,et al.  Tight upper bounds on the redundancy of Huffman codes , 1989, IEEE Trans. Inf. Theory.

[4]  T. Aaron Gulliver,et al.  Near-Optimality of the Minimum Average Redundancy Code for Almost All Monotone Sources , 2011, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[5]  T. Aaron Gulliver,et al.  The Minimum Average Code for Finite Memoryless Monotone Sources , 2007, IEEE Transactions on Information Theory.

[6]  T. Aaron Gulliver,et al.  How Suboptimal Is the Shannon Code? , 2013, IEEE Transactions on Information Theory.

[7]  Alfredo De Santis,et al.  New bounds on the redundancy of Huffman codes , 1991, IEEE Trans. Inf. Theory.

[8]  David C. van Voorhis,et al.  Optimal source codes for geometrically distributed integer alphabets (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[9]  Wojciech Szpankowski,et al.  Asymptotic average redundancy of Huffman (and other) block codes , 2000, IEEE Trans. Inf. Theory.

[10]  Raymond W. Yeung,et al.  A simple upper bound on the redundancy of Huffman codes , 2002, IEEE Trans. Inf. Theory.

[11]  Ugo Vaccaro,et al.  Bounding the average length of optimal source codes via majorization theory , 2004, IEEE Transactions on Information Theory.

[12]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[13]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.