Critical Random Graphs: Diameter and Mixing Time 1

Let C1 denote the largest connected component of the critical Erdős– Rényi random graph G(n, 1 n ). We show that, typically, the diameter of C1 is of order n1/3 and the mixing time of the lazy simple random walk on C1 is of order n. The latter answers a question of Benjamini, Kozma and Wormald. These results extend to clusters of size n2/3 of p-bond percolation on any d-regular n-vertex graph where such clusters exist, provided that p(d − 1) ≤ 1 + O(n−1/3).

[1]  C. Nash-Williams,et al.  Random walk and electric currents in networks , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  Frank Spitzer,et al.  The Galton-Watson Process with Mean One and Finite Variance , 1966 .

[3]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[4]  P. Tetali Random walks and the effective resistance of networks , 1991 .

[5]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[6]  Russell Lyons,et al.  Random Walks, Capacity and Percolation on Trees , 1992 .

[7]  B. Pittel,et al.  The structure of a random graph at the point of the phase transition , 1994 .

[8]  Russell Lyons,et al.  Conceptual proofs of L log L criteria for mean behavior of branching processes , 1995 .

[9]  David Aldous,et al.  Brownian excursions, critical random graphs and the multiplicative coalescent , 1997 .

[10]  Tomasz Luczak Random trees and random graphs , 1998, Random Struct. Algorithms.

[11]  Y. Peres Probability on Trees: An Introductory Climb , 1999 .

[12]  F. Chung,et al.  The Diameter of Random Sparse Graphs , 2000 .

[13]  Remco van der Hofstad,et al.  Random subgraphs of finite graphs: I. The scaling window under the triangle condition , 2003 .

[14]  Joel H. Spencer,et al.  Random subgraphs of finite graphs: I. The scaling window under the triangle condition , 2005, Random Struct. Algorithms.

[15]  Asaf Nachmias,et al.  The critical random graph, with martingales , 2005 .

[16]  Martin T. Barlow,et al.  Random walk on the incipient infinite cluster on trees , 2005 .

[17]  Prabhakar Raghavan,et al.  The electrical resistance of a graph captures its commute and cover times , 2005, computational complexity.

[18]  Vijaya Ramachandran,et al.  The diameter of sparse random graphs , 2007, Random Struct. Algorithms.

[19]  B. Reed,et al.  The Evolution of the Mixing Rate , 2007, math/0701474.

[20]  Béla Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007, Random Struct. Algorithms.

[21]  Remco van der Hofstad,et al.  Random subgraphs of the 2D Hamming graph: the supercritical phase , 2008, 0801.1607.

[22]  Yuval Peres,et al.  Critical percolation on random regular graphs , 2007, Random Struct. Algorithms.