Classical and Quantum Structures

[1]  Dusko Pavlovic Categorical logic of Names and Abstraction in Action Calculi , 1997, Math. Struct. Comput. Sci..

[2]  Dusko Pavlovic,et al.  Quantum measurements without sums , 2007 .

[3]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[4]  Peter Gabriel,et al.  Calculus of Fractions and Homotopy Theory , 1967 .

[5]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[6]  V. Turaev Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.

[7]  David N. Yetter,et al.  Braided Compact Closed Categories with Applications to Low Dimensional Topology , 1989 .

[8]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[9]  O. Cohen CLASSICAL TELEPORTATION OF CLASSICAL STATES , 2003, quant-ph/0310017.

[10]  Samson Abramsky,et al.  Abstract Physical Traces , 2009, ArXiv.

[11]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[12]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[13]  S. Braunstein,et al.  Impossibility of deleting an unknown quantum state , 2000, Nature.

[14]  Thomas A. O. Fox Coalgebras and cartesian categories , 1976 .

[15]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[16]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[17]  R. Werner All teleportation and dense coding schemes , 2000, quant-ph/0003070.

[18]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, LICS 2004.

[19]  Bob Coecke,et al.  De-linearizing Linearity: Projective Quantum Axiomatics From Strong Compact Closure , 2005, QPL.

[20]  I︠u︡. I. Manin Topics in Noncommutative Geometry , 1991 .

[21]  R. Jozsa,et al.  A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .

[22]  Aram Harrow Coherent communication of classical messages. , 2004, Physical review letters.

[23]  G. Brassard,et al.  TelePOVM - A generalized quantum teleportation scheme , 2004, IBM J. Res. Dev..

[24]  Joachim Kock,et al.  Frobenius Algebras and 2-D Topological Quantum Field Theories , 2004 .