Efficient identification of Malassezia yeasts by matrix‐assisted laser desorption ionization‐time of flight mass spectrometry (MALDI‐TOF MS)

Infections caused by Malassezia yeasts are most likely underdiagnosed, because fatty acid supplementation is needed for growth. Rapid identification of Malassezia species is essential for appropriate treatment of Malassezia‐related skin infections, fungaemia and nosocomial outbreaks in neonates, children and adults and can be life‐saving for those patients. Ma‐assisted laser desorption ionization‐time of flight mass spectrometry (MALDI‐TOF MS) has been reported to be a rapid and reliable diagnostic tool to identify clinically important yeasts, but so far no data have been reported on identification of Malassezia isolates with this technique.

[1]  O. Petrini,et al.  Identification of dermatophytes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. , 2013, Medical mycology.

[2]  A. Velegraki,et al.  Skin diseases associated with Malassezia yeasts: facts and controversies. , 2013, Clinics in dermatology.

[3]  Julia Oh,et al.  Topographic diversity of fungal and bacterial communities in human skin , 2013, Nature.

[4]  M. Kostrzewa,et al.  Identification of Medically Relevant Species of Arthroconidial Yeasts by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry , 2013, Journal of Clinical Microbiology.

[5]  D. Winkler,et al.  Optimizing Identification of Clinically Relevant Gram-Positive Organisms by Use of the Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System , 2013, Journal of Clinical Microbiology.

[6]  C. Burnham,et al.  Optimization of Routine Identification of Clinically Relevant Gram-Negative Bacteria by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry and the Bruker Biotyper , 2013, Journal of Clinical Microbiology.

[7]  J. Y. Kim,et al.  Molecular Biological Identification of Malassezia Yeasts Using Pyrosequencing , 2013, Annals of dermatology.

[8]  J. Heitman,et al.  Genomic Insights into the Atopic Eczema-Associated Skin Commensal Yeast Malassezia sympodialis , 2013, mBio.

[9]  Patrick Ducoroy,et al.  Evaluation of MALDI-TOF mass spectrometry for the identification of medically-important yeasts in the clinical laboratories of Dijon and Lille hospitals. , 2013, Medical mycology.

[10]  J. Simon,et al.  MALDI-TOF mass spectrometry - a rapid method for the identification of dermatophyte species. , 2013, Medical mycology.

[11]  Ronald N. Jones,et al.  Candida guilliermondii and Other Species of Candida Misidentified as Candida famata: Assessment by Vitek 2, DNA Sequencing Analysis, and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry in Two Global Antifungal Surveillance Programs , 2012, Journal of Clinical Microbiology.

[12]  T. Maier,et al.  Rapid identification of Burkholderia mallei and Burkholderia pseudomallei by intact cell Matrix-assisted Laser Desorption/Ionisation mass spectrometric typing , 2012, BMC Microbiology.

[13]  Prasanna D. Khot,et al.  Optimization of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Analysis for Bacterial Identification , 2012, Journal of Clinical Microbiology.

[14]  M. Kostrzewa,et al.  Reclassification of the Candida haemulonii Complex as Candida haemulonii (C. haemulonii Group I), C. duobushaemulonii sp. nov. (C. haemulonii Group II), and C. haemulonii var. vulnera var. nov.: Three Multiresistant Human Pathogenic Yeasts , 2012, Journal of Clinical Microbiology.

[15]  K. Carroll,et al.  Prospective Evaluation of a Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System in a Hospital Clinical Microbiology Laboratory for Identification of Bacteria and Yeasts: a Bench-by-Bench Study for Assessing the Impact on Time to Identification and Cost-Effectiveness , 2012, Journal of Clinical Microbiology.

[16]  A. Masotti,et al.  MALDI-TOF MS proteomic phenotyping of filamentous and other fungi from clinical origin. , 2012, Journal of proteomics.

[17]  W. Meyer,et al.  MALDI-TOF MS Enables the Rapid Identification of the Major Molecular Types within the Cryptococcus neoformans/C. gattii Species Complex , 2012, PloS one.

[18]  B. Posteraro,et al.  Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry-Based Method for Discrimination between Molecular Types of Cryptococcus neoformans and Cryptococcus gattii , 2012, Journal of Clinical Microbiology.

[19]  John L. Spouge,et al.  Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi , 2012, Proceedings of the National Academy of Sciences.

[20]  P. Murray,et al.  Identification of clinical isolates of anaerobic bacteria using matrix-assisted laser desorption ionization-time of flight mass spectrometry , 2012, European Journal of Clinical Microbiology & Infectious Diseases.

[21]  M. Hantschke,et al.  The Malassezia Genus in Skin and Systemic Diseases , 2012, Clinical Microbiology Reviews.

[22]  T. Sugita,et al.  Genetic and biological features of catheter-associated Malassezia furfur from hospitalized adults. , 2012, Medical Mycology.

[23]  S. Ranque,et al.  Mould Routine Identification in the Clinical Laboratory by Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry , 2011, PloS one.

[24]  Maurizio Sanguinetti,et al.  Direct MALDI-TOF Mass Spectrometry Assay of Blood Culture Broths for Rapid Identification of Candida Species Causing Bloodstream Infections: an Observational Study in Two Large Microbiology Laboratories , 2011, Journal of Clinical Microbiology.

[25]  N. Lima,et al.  Matrix-assisted laser desorption/ionization time-of-flight intact cell mass spectrometry to detect emerging pathogenic Candida species. , 2011, Diagnostic microbiology and infectious disease.

[26]  F. Pardo,et al.  Espectrometría de masas matrix-assisted laser desorption ionization time-of-flight vs. metodología convencional en la identificación de Candida no-albicans , 2011 .

[27]  R. Hay Malassezia, dandruff and seborrhoeic dermatitis: an overview , 2011, The British journal of dermatology.

[28]  M. Kuhns,et al.  Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. , 2011, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[29]  L. Trovato,et al.  Malassezia furfur fungaemia in a neonatal patient detected by lysis‐centrifugation blood culture method: first case reported in Italy , 2011, Mycoses.

[30]  T. de Baère,et al.  Validation of a modified algorithm for the identification of yeast isolates using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) , 2011, European Journal of Clinical Microbiology & Infectious Diseases.

[31]  D. Otranto,et al.  Physiological and molecular characterization of atypical lipid-dependent Malassezia yeasts from a dog with skin lesions: adaptation to a new host? , 2011, Medical mycology.

[32]  F. Cabañes,et al.  Malassezia cuniculi sp. nov., a novel yeast species isolated from rabbit skin. , 2011, Medical mycology.

[33]  Eveline Guého-Kellermann,et al.  Malassezia Baillon (1889) , 2011 .

[34]  M. L. Pérez Del Molino,et al.  [Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry vs conventional methods in the identification of Candida non-albicans]. , 2011, Enfermedades infecciosas y microbiologia clinica.

[35]  A. Groll,et al.  Minireview: Malassezia infections in immunocompromised patients , 2010, Mycoses.

[36]  G. Giusiano,et al.  Prevalence of Malassezia species in pityriasis versicolor lesions in northeast Argentina. , 2010, Revista iberoamericana de micologia.

[37]  T. Boekhout Malassezia and the skin , 2010 .

[38]  A. Hoerauf,et al.  Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Fast and Reliable Identification of Clinical Yeast Isolates , 2009, Journal of Clinical Microbiology.

[39]  M. Erhard,et al.  Rapid Classification and Identification of Salmonellae at the Species and Subspecies Levels by Whole-Cell Matrix-Assisted Laser Desorption Ionization – Time of Flight Mass Spectrometry † , 2008 .

[40]  R. Gasser,et al.  Genetic variants of Malassezia pachydermatis from canine skin: body distribution and phospholipase activity. , 2008, FEMS yeast research.

[41]  M. Blaser,et al.  Analysis of Malassezia microbiota in healthy superficial human skin and in psoriatic lesions by multiplex real-time PCR. , 2008, FEMS yeast research.

[42]  Sen-Yung Hsieh,et al.  Highly Efficient Classification and Identification of Human Pathogenic Bacteria by MALDI-TOF MS*S , 2008, Molecular & Cellular Proteomics.

[43]  P. Hu,et al.  Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens , 2007, Proceedings of the National Academy of Sciences.

[44]  T. Boekhout,et al.  Two new lipid-dependent Malassezia species from domestic animals. , 2007, FEMS yeast research.

[45]  T. Sugita,et al.  Quantitative Analysis of Cutaneous Malassezia in Atopic Dermatitis Patients Using Real‐Time PCR , 2006, Microbiology and immunology.

[46]  H. Ashbee Recent developments in the immunology and biology of Malassezia species. , 2006, FEMS immunology and medical microbiology.

[47]  R. K. Devlin,et al.  INVASIVE FUNGAL INFECTIONS CAUSED BY CANDIDA AND MALASSEZIA SPECIES IN THE NEONATAL INTENSIVE CARE UNIT , 2006, Advances in neonatal care : official journal of the National Association of Neonatal Nurses.

[48]  M. Diaz,et al.  Etiology of fungaemia and catheter colonisation in Argentinean paediatric patients , 2006, Mycoses.

[49]  T. Boekhout,et al.  Malassezia Baillon, emerging clinical yeasts. , 2005, FEMS yeast research.

[50]  H. Yamaguchi,et al.  A simple PCR-RFLP method for identification and differentiation of 11 Malassezia species. , 2005, Journal of microbiological methods.

[51]  F. Cabañes,et al.  Molecular Analysis of Malassezia sympodialis-Related Strains from Domestic Animals , 2005, Journal of Clinical Microbiology.

[52]  P. Legrand,et al.  Frequency of intravascular catheter colonization by Malassezia spp. in adult patients , 2004, Mycoses.

[53]  T. Boekhout,et al.  Identification and Typing of Malassezia Species by Amplified Fragment Length Polymorphism and Sequence Analyses of the Internal Transcribed Spacer and Large-Subunit Regions of Ribosomal DNA , 2004, Journal of Clinical Microbiology.

[54]  M. Takashima,et al.  A New Yeast, Malassezia yamatoensis, Isolated from a Patient with Seborrheic Dermatitis, and Its Distribution in Patients and Healthy Subjects , 2004, Microbiology and immunology.

[55]  A. Hasegawa,et al.  Malassezia nana sp. nov., a novel lipid-dependent yeast species isolated from animals. , 2004, International journal of systematic and evolutionary microbiology.

[56]  G. Deluca,et al.  Identificación de especies de Malassezia por PCR-REA , 2003 .

[57]  G. Giusiano,et al.  [Identification of Malassezia species by PCR-REA]. , 2003, Revista Argentina de microbiologia.

[58]  T. Boekhout,et al.  Fast, Noninvasive Method for Molecular Detection and Differentiation of Malassezia Yeast Species on Human Skin and Application of the Method to Dandruff Microbiology , 2002, Journal of Clinical Microbiology.

[59]  A. Kourtis,et al.  Peripheral thromboembolism associated with Malassezia furfur sepsis. , 2002, The Pediatric infectious disease journal.

[60]  A. Velegraki,et al.  Identification of Malassezia species from patient skin scales by PCR-RFLP. , 2002, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[61]  S. Stinchi,et al.  Rapid methods to extract DNA and RNA from Cryptococcus neoformans. , 2001, FEMS yeast research.

[62]  H. Suto,et al.  Molecular Analysis of Malassezia Microflora on the Skin of Atopic Dermatitis Patients and Healthy Subjects , 2001, Journal of Clinical Microbiology.

[63]  A. van Belkum,et al.  Identification and typing of Malassezia yeasts using amplified fragment length polymorphism (AFLP), random amplified polymorphic DNA (RAPD) and denaturing gradient gel electrophoresis (DGGE). , 2001, FEMS yeast research.

[64]  D. Durand,et al.  Thrombolytic Therapy for Adhesion of Percutaneous Central Venous Catheters to Vein Intima Associated With Malassezia furfur Infection , 2001, Journal of Perinatology.

[65]  B. Petrini,et al.  Malassezia pachydermatis fungaemia in a neonatal intensive care unit , 2001, Acta paediatrica.

[66]  K. A. Schleman,et al.  Intracardiac mass complicating Malassezia furfur fungemia. , 2000, Chest.

[67]  E. Guého,et al.  A single PCR‐restriction endonuclease analysis for rapid identification of Malassezia species , 2000, Letters in applied microbiology.

[68]  H. Yamaguchi,et al.  Species identification and strain typing of Malassezia species stock strains and clinical isolates based on the DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions. , 2000, Journal of medical microbiology.

[69]  D. Ashford,et al.  An epidemic of Malassezia pachydermatis in an intensive care nursery associated with colonization of health care workers' pet dogs. , 1998, The New England journal of medicine.

[70]  A. van Belkum,et al.  Monitoring spread of Malassezia infections in a neonatal intensive care unit by PCR-mediated genetic typing , 1994, Journal of clinical microbiology.

[71]  W. Jarvis,et al.  Nosocomial Malassezia pachydermatis bloodstream infections in a neonatal intensive care unit , 1994, The Pediatric infectious disease journal.