A Genetic Algorithm for Cocyclic Hadamard Matrices
暂无分享,去创建一个
Víctor Álvarez | José Ándrés Armario | María Dolores Frau | Pedro Real Jurado | V. Álvarez | J. Armario | M. Frau | P. Real
[1] Zbigniew Michalewicz,et al. Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.
[2] V. K. A. M. Gugenheim,et al. Perturbation Theory in Dierential Homological Algebra II , 1989 .
[3] A. Baliga,et al. Self-dual Codes Using Image Restoration Techniques , 2001, AAECC.
[4] D. Flannery,et al. Cocyclic Hadamard Matrices and Hadamard Groups Are Equivalent , 1997 .
[5] A. L.,et al. PERTURBATION THEORY IN DIFFERENTIAL HOMOLOGICAL ALGEBRA I , 2022 .
[6] Larry A. Lambe,et al. Computing Resolutions Over Finite p-Groups , 2001 .
[7] Víctor Álvarez,et al. An Algorithm for Computing Cocyclic Matrices Developed over Some Semidirect Products , 2001, AAECC.
[8] K. J. Horadam,et al. Cocyclic Development of Designs , 1993 .
[9] Pedro Real,et al. Homological perturbation theory and associativity , 2000 .
[10] E. O'Brien,et al. Computing 2-cocyeles for central extensions and relative difference sets , 2000 .
[11] K. J. Horadam,et al. Generation of Cocyclic Hadamard Matrices , 1995 .
[12] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[13] Kathy J. Horadam,et al. Cocyclic Hadamard matrices over ℤt × ℤ22 , 1995, Australas. J Comb..
[14] D. Flannery,et al. Calculation of cocyclic matrices , 1996 .
[15] Zbigniew Michalewicz,et al. Genetic Algorithms Plus Data Structures Equals Evolution Programs , 1994 .
[16] V. K. A. M. Gugenheim,et al. Perturbation Theory in Dierential Homological Algebra II , 1989 .