Conversion of hydrocarbons and alcohols for fuel cells

Fuel conversion to hydrogen is an important part of most fuel cell systems. The paper describes the available technologies for conversion of hydrocarbons and alcohols. The endothermic steam reforming catalysts and processes as well as autothermal reforming are proven technologies. Recent developments include catalytic partial oxidation. The integration of the fuel processing with the fuel cell represents a task with requirements depending on each type of fuel cell and application. The automotive use of fuel cells is at present a special challenge. The optimum fuel for stationary plants is natural gas (if available), whereas light naphtha appears to be the choice for automotive use.

[1]  Jens R. Rostrup-Nielsen,et al.  Deactivation in pseudo-adiabatic reactors , 1986 .

[2]  Stanislaw E. Golunski,et al.  On-board hydrogen generation for transport applications: the HotSpot™ methanol processor , 1998 .

[3]  S. Fujita,et al.  Difference in the selectivity of CO and CO2 methanation reactions , 1997 .

[4]  Andreas Docter,et al.  Gasoline fuel cell systems , 1999 .

[5]  T. Kojima,et al.  Hydrogen permeation properties through composite membranes of platinum supported on porous alumina , 2000 .

[6]  Peter C. Eklund,et al.  Hydrogen Adsorption in Carbon Materials , 1999 .

[7]  B. Höhlein,et al.  Fuel cell drive system with hydrogen generation in test , 2000 .

[8]  Brant A. Peppley,et al.  Methanol–steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model , 1999 .

[9]  Paul M. Witt,et al.  Effect of Flow Rate on the Partial Oxidation of Methane and Ethane , 1996 .

[10]  Bernd Emonts,et al.  Methanol steam reforming in a fuel cell drive system , 1999 .

[11]  Mark S. Wainwright,et al.  KINETIC MECHANISM FOR THE REACTION BETWEEN METHANOL AND WATER OVER A CU-ZNO-AL2O3 CATALYST , 1993 .

[12]  N. Iwasa,et al.  Steam reforming of methanol over Pd/ZnO: Effect of the formation of PdZn alloys upon the reaction , 1995 .

[13]  B. Höhlein,et al.  Fuel cell power trains for road traffic , 1999 .

[14]  S. Freni,et al.  Ethanol steam reforming in a molten carbonate fuel cell. A preliminary kinetic investigation , 1996 .

[15]  R. Sinkevitch,et al.  Carbon Monoxide Removal from Hydrogen-Rich Fuel Cell Feedstreams by Selective Catalytic Oxidation , 1993 .

[16]  J. Rostrup-Nielsen,et al.  Reforming of Hydrocarbons into Synthesis Gas on Supported Metal Catalysts , 1997 .

[17]  N. Iwasa,et al.  Reforming of ethanol-dehydrogenation to ethyl acetate and steam reforming to acetic acid over copper-based catalysts , 1991 .

[18]  R. Hughes,et al.  Fabrication of dense palladium composite membranes for hydrogen separation , 2000 .

[19]  L. Schmidt,et al.  Synthesis gas formation by catalytic oxidation of methane in fluidized bed reactors , 1994 .

[20]  L. Schmidt,et al.  Effect of pressure on three catalytic partial oxidation reactions at millisecond contact times , 1995 .

[21]  Jesse S. Wainright,et al.  A H2O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte , 1996 .

[22]  Miguel Laborde,et al.  Hydrogen from steam reforming of ethanol. characterization and performance of copper-nickel supported catalysts , 1998 .

[23]  J. R. Rostrup-Nielsen,et al.  The role of catalysis in the conversion of natural gas for power generation , 1997 .

[24]  L. Schmidt,et al.  Comparison of monolith-supported metals for the direct oxidation of methane to syngas , 1994 .

[25]  H. Gasteiger,et al.  Kinetics of the Selective Low-Temperature Oxidation of CO in H2-Rich Gas over Au/α-Fe2O3 , 1999 .

[26]  H. G. Düsterwald,et al.  Methanol steam‐reforming in a catalytic fixed bed reactor , 1997 .

[27]  T. Nakajima,et al.  Catalytic properties of supported cobalt catalysts for steam reforming of ethanol , 1997 .

[28]  Daniel A. Hickman,et al.  Synthesis gas formation by direct oxidation of methane over Pt monoliths , 1992 .

[29]  S. Wasmus,et al.  Methanol oxidation and direct methanol fuel cells: a selective review 1 In honour of Professor W. Vi , 1999 .

[30]  Ivar Ivarsen Primdahl,et al.  Developments in Autothermal Reforming , 1998 .

[31]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[32]  Jens R. Rostrup-Nielsen,et al.  Steam reforming of liquid hydrocarbons , 1998 .

[33]  B. Höhlein,et al.  Compact methanol reformer test for fuel-cell powered light-duty vehicles , 1998 .

[34]  Joan M. Ogden,et al.  A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development , 1999 .

[35]  J. Rostrup-Nielsen,et al.  Internal steam reforming in fuel cells and alkali poisoning , 1995 .

[36]  S. Golunski HotSpotl'l Fuel Processor ADVANCING THE CASE FOR FUEL CELL POWERED CARS , 1998 .

[37]  F. Basile,et al.  Ni/Mg/Al anionic clay derived catalysts for the catalytic partial oxidation of methane : Residence time dependence of the reactivity features , 1998 .

[38]  Daniel A. Hickman,et al.  Synthesis gas formation by direct oxidation of methane over Rh monoliths , 1993 .

[39]  V. Choudhary,et al.  Selective Oxidation of Methane to CO and H2 over Ni/MgO at Low Temperatures , 1992 .

[40]  B. Höhlein,et al.  Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer , 1996 .

[41]  Thomas Sandahl Christensen,et al.  Adiabatic prereforming of hydrocarbons — an important step in syngas production , 1996 .

[42]  K. Aasberg-Petersen,et al.  Catalytic partial oxidation of natural gas at elevated pressure and low residence time , 2001 .

[43]  P. Nielsen,et al.  Steam reforming of methane in a membrane reactor , 1995 .

[44]  M. Haruta,et al.  Selective oxidation of CO in hydrogen over gold supported on manganese oxides , 1997 .

[45]  B. Pivovar,et al.  Pervaporation membranes in direct methanol fuel cells , 1999 .

[46]  L. Schmidt,et al.  The Effect of Ceramic Supports on Partial Oxidation of Hydrocarbons over Noble Metal Coated Monoliths , 1998 .

[47]  William L. Mitchell,et al.  Development of a Catalytic Partial Oxidation Ethanol Reformer for Fuel Cell Applications , 1995 .

[48]  L. Schmidt Millisecond chemical reactions and reactors , 2000 .

[49]  T. Nakajima,et al.  Effect of crystallite size on the catalysis of alumina-supported cobalt catalyst for steam reforming of ethanol , 1998 .

[50]  A. I. Kozlov,et al.  A new approach to active supported Au catalysts , 1999 .

[51]  K. Aasberg-Petersen,et al.  Molecular aspects in short residence time catalytic partial oxidation reactions , 1998 .