Thermo-hydro-mechanical simulation of Atlas in situ large-scale test in Boom clay

Following the need for understanding and quantifying the effect of temperature on the response of a candidate host formation for radioactive waste disposal, finite element modelling of an in situ thermal experiment has been carried out. Based on a thermo-hydro-mechanical (THM) finite element approach including a consistent thermo-plastic constitutive model, it has been possible to reproduce the THM response of a clay formation submitted to in situ thermal loading. The simulated large-scale experiment, called ATLAS was designed in the underground research facility (HADES-URF) in Mol, Belgium. After an extensive literature analysis on the thermal, hydraulic and mechanical characteristics of Boom Clay, laboratory tests were simulated to calibrate model parameters. The results of the finite element modelling of the ATLAS experiment were compared with in situ measurements and revealed the necessity to account for flow diffusion in all three directions through a 2D axisymmetric analysis. Finally, those results were interpreted in the light of elasto-thermoplasticity, which emphasizes the significant role of thermo-plastic processes in the global THM response of the clay formation.

[1]  Nabil Sultan,et al.  The thermal consolidation of Boom clay , 2000, Poromechanics.

[2]  Steven R. Sobolik,et al.  The FEBEX benchmark test : case definition and comparison of modelling approaches , 2005 .

[3]  William Boyle,et al.  Measuring Thermal, Hydrological, Mechanical, and Chemical Responses in the Yucca Mountain Drift Scale Test , 2004 .

[4]  Fred Collin,et al.  Couplages thermo-hydro-mécaniques dans les sols et les roches tendres partiellement saturés , 2003 .

[5]  L. Laloui,et al.  Experimental study of thermal effects on the mechanical behaviour of a clay , 2004 .

[6]  A. Gens,et al.  Nonisothermal multiphase flow of brine and gas through saline media , 1994 .

[7]  F. Bernier,et al.  Overview of in-situ thermomechanical experiments in clay: Concept, results and interpretation , 1996 .

[8]  Lyesse Laloui,et al.  Constitutive modelling of the thermo-plastic behaviour of soils , 2005 .

[9]  Antonio Gens,et al.  In situ behaviour of a stiff layered clay subject to thermal loading : observations and interpretation , 2007 .

[10]  Wim Haegeman,et al.  Some mechanical properties of reconstituted Boom clay , 1996 .

[11]  Bernhard A. Schrefler,et al.  The Finite Element Method in the Deformation and Consolidation of Porous Media , 1987 .

[12]  Robert Charlier,et al.  A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models , 2006 .

[13]  Chin-Fu Tsang,et al.  A discussion of thermo–hydro–mechanical (THM) processes associated with nuclear waste repositories , 2000 .

[14]  Antonio Gens,et al.  Clay barriers in radioactive waste disposal , 2001 .

[15]  M. Sintubin,et al.  Brittle fractures and ductile shear bands in argillaceous sediments: inferences from Oligocene Boom Clay (Belgium) , 2005 .

[16]  Bernhard A. Schrefler,et al.  Coupled heat, water and gas flow in deformable porous media , 1995 .

[17]  Jean-Dominique Barnichon,et al.  Observations and predictions of hydromechanical coupling effects in the Boom clay, Mol Underground Research Laboratory, Belgium , 2003 .

[18]  Giulio Maier,et al.  On failure indicators in multidissipative materials , 1996 .

[19]  D. D. Bruyn,et al.  The second phase of ATLAS: the continuation of a running THM test in the HADES underground research facility at Mol , 2002 .

[20]  Ian G. McKinley,et al.  The Geological Disposal of Nuclear Waste , 1987 .

[21]  X. L. Li,et al.  An overview of long-term HM measurements around HADES URF , 2006 .

[22]  Lyesse Laloui,et al.  Thermo-plasticity of clays: an isotropic yield mechanism , 2003 .

[23]  W. Bastiaens,et al.  Twenty-five years' geotechnical observation and testing in the Tertiary Boom Clay formation , 2007 .

[24]  J. Mandel Generalisation de la theorie de plasticite de W. T. Koiter , 1965 .

[25]  T. Hueckel,et al.  Effective stress and water pressure in saturated clays during heating–cooling cycles , 1992 .

[26]  Robert Charlier,et al.  Numerical modelling of coupled transient phenomena , 2001 .

[27]  L. Laloui,et al.  Modélisation du comportement thermo-hydro-mécanique des milieux poreux anélastiques , 1993 .

[28]  S. Tacherifet,et al.  Etude des comportements mécanique, thermo-mécanique et hydro-mécanique des argiles gonflantes et non gonflantes fortement compactées , 1997 .

[29]  J. Cripps The engineering geology of weak rock , 1993 .

[30]  W Bastiaens,et al.  Characterisation of induced discontinuities in the Boom Clay around the underground excavations (URF, Mol, Belgium) , 2004 .

[31]  Akira Kobayashi,et al.  Field experiment, results and THM behavior in the Kamaishi mine experiment , 2001 .

[32]  Lyesse Laloui,et al.  ACMEG-T: Soil Thermoplasticity Model , 2009 .

[33]  Robert Charlier,et al.  Thermo-hydro-mechanical coupling in clay barriers , 2002, Poromechanics.

[34]  Yu-Jun Cui,et al.  Suction effects in deep Boom Clay block samples , 2007 .