On Scatterometer Ocean Stress

Abstract Scatterometers estimate the relative atmosphere–ocean motion at spatially high resolution and provide accurate inertial-scale ocean wind forcing information, which is crucial for many ocean, atmosphere, and climate applications. An empirical scatterometer ocean stress (SOS) product is estimated and validated using available statistical information. A triple collocation dataset of scatterometer, and moored buoy and numerical weather prediction (NWP) observations together with two commonly used surface layer (SL) models are used to characterize the SOS. First, a comparison between the two SL models is performed. Although their roughness length and the stability parameterizations differ somewhat, the two models show little differences in terms of stress estimation. Second, a triple collocation exercise is conducted to assess the true and error variances explained by the observations and the SL models. The results show that the uncertainty in the NWP dataset is generally larger than in the buoy and s...

[1]  L. Hasse,et al.  Sea surface wind stress and drag coefficients: The hexos results , 1992 .

[2]  D. Chelton,et al.  Satellite Measurements Reveal Persistent Small-Scale Features in Ocean Winds , 2004, Science.

[3]  M. Donelan,et al.  On the Dependence of Sea Surface Roughness on Wave Development , 1993 .

[4]  P. K. Taylor,et al.  The Dependence of Sea Surface Roughness on the Height and Steepness of the Waves , 2001 .

[5]  E. Attema,et al.  The Active Microwave Instrument on-board the ERS-1 satellite , 1991, Proc. IEEE.

[6]  M. Portabella,et al.  Development of a Global Scatterometer Validation and Monitoring , 2007 .

[7]  H. Charnock Wind stress on a water surface , 1955 .

[8]  H. Graber,et al.  On the wave age dependence of wind stress over pure wind seas , 2003 .

[9]  S. Larsen,et al.  On the Dependence of Sea Surface Roughness on Wind Waves , 1998 .

[10]  G. T. Csanady,et al.  Air-Sea Interaction , 2001 .

[11]  M. Bourassa,et al.  Satellite-based Observations Of SurfaceTurbulent Stress During Severe Weather , 2006 .

[12]  W. Liu,et al.  Bulk Parameterization of Air-Sea Exchanges of Heat and Water Vapor Including the Molecular Constraints at the Interface , 1979 .

[13]  W. A. Oost,et al.  The roughness of wind waves , 1991 .

[14]  A. Stoffelen Toward the true near-surface wind speed: Error modeling and calibration using triple collocation , 1998 .

[15]  W. Timothy Liu,et al.  Equivalent Neutral Wind , 1996 .

[16]  A. Hollingsworth,et al.  Wind turning across the marine atmospheric boundary layer , 2005 .

[17]  Ecmwf Newsletter,et al.  EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS , 2004 .

[18]  J. Bidlot,et al.  Intercomparison of the Performance of Operational Ocean Wave Forecasting Systems with Buoy Data , 2002 .

[19]  Hans Bonekamp,et al.  Statistical Comparisons of Observed and ECMWF Modeled Open Ocean Surface Drag , 2002 .

[20]  Gregory C. Johnson,et al.  Ocean currents evident in satellite wind data , 2001 .

[21]  Ad Stoffelen Scatterometer Applications in the European Seas , 2008 .

[22]  P. Janssen The Interaction of Ocean Waves and Wind , 2004 .

[23]  G. Geernaert Theory of Air-Sea Momentum, Heat and Gas Fluxes , 1999 .

[24]  Duane E. Waliser,et al.  Air-sea interaction , 2005 .

[25]  H. Hersbach,et al.  An improved C-band scatterometer ocean geophysical model function: CMOD5 , 2007 .

[26]  D. Chelton,et al.  Global Observations of Oceanic Rossby Waves , 1996, Science.

[27]  Michael H. Freilich,et al.  Observations of coupling between surface wind stress and sea surface temperature in the Eastern Tropical Pacific , 2001 .

[28]  Ralph F. Milliff,et al.  The global distribution of the time-average wind stress curl from NSCAT , 2001 .