Deformability of Oxide Inclusions in Tire Cord Steels

[1]  Yanchun Zhou,et al.  A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids , 2016, Scientific Reports.

[2]  Xinhua Wang,et al.  Formation Mechanism of CaO-SiO2-Al2O3-(MgO) Inclusions in Si-Mn-Killed Steel with Limited Aluminum Content During the Low Basicity Slag Refining , 2016, Metallurgical and Materials Transactions B.

[3]  Xinhua Wang,et al.  Formation Mechanism of SiO2-Type Inclusions in Si-Mn-Killed Steel Wires Containing Limited Aluminum Content , 2015, Metallurgical and Materials Transactions B.

[4]  J. Park,et al.  Effect of Slag Composition on the Concentration of Al2O3 in the Inclusions in Si-Mn-killed Steel , 2014, Metallurgical and Materials Transactions B.

[5]  Fuxiang Huang,et al.  Control of Stringer Shaped Non‐Metallic Inclusions of CaO–Al2O3 System in API X80 Linepipe Steel Plates , 2014 .

[6]  Bo Xu,et al.  Microscopic theory of hardness and design of novel superhard crystals , 2012 .

[7]  Shuhua Chen,et al.  Top slag refining for inclusion composition transform control in tire cord steel , 2012, International Journal of Minerals, Metallurgy, and Materials.

[8]  Ken-ichi Yamamoto,et al.  Behavior of Non-metallic Inclusions in Steel during Hot Deformation and the Effects of Deformed Inclusions on Local Ductility , 2011 .

[9]  Jijun Zhao,et al.  Correlation between hardness and elastic moduli of the covalent crystals , 2011 .

[10]  J. Tse Intrinsic hardness of crystalline solids , 2010 .

[11]  Faming Gao,et al.  Theoretical model of intrinsic hardness , 2006 .

[12]  Jirí Vackár,et al.  Hardness of covalent and ionic crystals: first-principle calculations. , 2006, Physical review letters.

[13]  Lifeng Zhang State of the Art in the Control of Inclusions in Tire Cord Steels ‐ a Review , 2006 .

[14]  S. Inaba,et al.  Young's Modulus and Compositional Parameters of Oxide Glasses , 2004 .

[15]  Youn‐Bae Kang,et al.  Inclusions Chemistry for Mn/Si Deoxidized Steels: Thermodynamic Predictions and Experimental Confirmations , 2004 .

[16]  F. Gao Hardness estimation of complex oxide materials , 2004 .

[17]  Siyuan Zhang,et al.  Hardness of covalent crystals. , 2003, Physical review letters.

[18]  S. Hattori,et al.  Fracture Behavior of Oxide Inclusions during Rolling and Drawing , 2002 .

[19]  Ulf Ståhlberg,et al.  Deformation of inclusions during hot rolling of steels , 2001 .

[20]  Michael F. Ashby,et al.  Checks and estimates for material properties. I. Ranges and simple correlations , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  M. Ashizuka,et al.  Mechanical Properties of Sintered Silicate Crystals (Part 1) , 1989 .

[22]  E. B. Hawbolt,et al.  The effect of hot rolling on the inclusion morphology of a semi-killed and a calcium treated X-70 pipeline steel , 1985 .

[23]  P. V. Riboud,et al.  Étude de la plasticité d’inclusions d’oxydes , 1981 .

[24]  J. Mackenzie,et al.  Direct calculation of Young's moidulus of glass , 1973 .

[25]  S. Isa,et al.  On the Behavior of the Oxide Inclusions of System MnO-Si02-Al2O3 in Steels during Hot-rolling, and their Influence on Tensile Strength of the Steels , 1969 .

[26]  J. B. Wachtman,et al.  Young's Modulus of Various Refractory Materials as a Function of Temperature , 1959 .

[27]  Xianghua Liu,et al.  Deformation behavior of inclusions in stainless steel strips during multi-pass cold rolling , 2009 .

[28]  H. Metin Ertunc,et al.  The prediction of mechanical behavior for steel wires and cord materials using neural networks , 2007 .

[29]  W. Hillig A Methodology for Estimating the Mechanical Properties of Oxides at High Temperatures , 1993 .