High-efficiency resonant amplification of weak magnetic fields for single spin magnetometry at room temperature.

Magnetic resonance techniques not only provide powerful imaging tools that have revolutionized medicine, but they have a wide spectrum of applications in other fields of science such as biology, chemistry, neuroscience and physics. However, current state-of-the-art magnetometers are unable to detect a single nuclear spin unless the tip-to-sample separation is made sufficiently small. Here, we demonstrate theoretically that by placing a ferromagnetic particle between a nitrogen-vacancy magnetometer and a target spin, the magnetometer sensitivity is improved dramatically. Using materials and techniques that are already experimentally available, our proposed set-up is sensitive enough to detect a single nuclear spin within ten milliseconds of data acquisition at room temperature. The sensitivity is practically unchanged when the ferromagnet surface to the target spin separation is smaller than the ferromagnet lateral dimensions; typically about a tenth of a micrometre. This scheme further benefits when used for nitrogen-vacancy ensemble measurements, enhancing sensitivity by an additional three orders of magnitude.

[1]  M. Julliere Tunneling between ferromagnetic films , 1975 .

[2]  T. Debuisschert,et al.  Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging , 2012, 1206.1201.

[3]  M. Huber,et al.  Gradiometric micro-SQUID susceptometer for scanning measurements of mesoscopic samples. , 2008, The Review of scientific instruments.

[4]  D. Awschalom,et al.  A quantum memory intrinsic to single nitrogen-vacancy centres in diamond , 2011 .

[5]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1991 .

[6]  Lee C. Bassett,et al.  Engineering shallow spins in diamond with nitrogen delta-doping , 2012 .

[7]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[8]  D. D. Awschalom,et al.  Gigahertz Dynamics of a Strongly Driven Single Quantum Spin , 2009, Science.

[9]  J. Meijer,et al.  Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3 Sample Volume , 2013, Science.

[10]  A. Yacoby,et al.  Nanometre-scale probing of spin waves using single-electron spins , 2014, Nature Communications.

[11]  E. Bakkers,et al.  Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire , 2013, Nature Physics.

[12]  N. L. Schryer,et al.  The motion of 180° domain walls in uniform dc magnetic fields , 1974 .

[13]  Philipp Neumann,et al.  Efficient route to high-bandwidth nanoscale magnetometry using single spins in diamond , 2014, Scientific Reports.

[14]  C. Degen,et al.  Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy sensor , 2013, 1312.2394.

[15]  J. Morton,et al.  Proposed spin amplification for magnetic sensors employing crystal defects. , 2011, Physical review letters.

[16]  S. Das Sarma,et al.  How to Enhance Dephasing Time in Superconducting Qubits , 2007, 0712.2225.

[17]  D. O. Smith Static and Dynamic Behavior of Thin Permalloy Films , 1958 .

[18]  Bernard Dieny,et al.  Excitations of incoherent spin-waves due to spin-transfer torque , 2004, Nature materials.

[19]  Raymond G. Beausoleil,et al.  Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications , 2009 .

[20]  J Wrachtrup,et al.  High-dynamic-range magnetometry with a single nuclear spin in diamond. , 2012, Nature nanotechnology.

[21]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[22]  H. Huebl,et al.  Spin Hall magnetoimpedance , 2014, 1404.7432.

[23]  F. Jelezko,et al.  Strong driving of a single spin using arbitrarily polarized fields , 2014, 1404.6282.

[24]  D. Loss,et al.  Long-Distance Entanglement of Spin Qubits via Ferromagnet , 2013, 1302.4017.

[25]  D. Awschalom,et al.  Ultrafast optical control of orbital and spin dynamics in a solid-state defect , 2014, Science.

[26]  M. Lukin,et al.  A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. , 2011, Nature nanotechnology.

[27]  Nicole Propst,et al.  Introduction To The Theory Of Ferromagnetism , 2016 .

[28]  Ed Ramsden Hall-Effect Sensors , 2001 .

[29]  Anthony Arrott,et al.  Introduction to the theory of ferromagnetism , 1996 .

[30]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[31]  F. Reinhard,et al.  Tracking temperature-dependent relaxation times of ferritin nanomagnets with a wideband quantum spectrometer. , 2014, Physical review letters.

[32]  D. Awschalom,et al.  Probing surface noise with depth-calibrated spins in diamond. , 2014, Physical review letters.

[33]  S Tarucha,et al.  Fast electrical control of single electron spins in quantum dots with vanishing influence from nuclear spins. , 2014, Physical review letters.

[34]  D. Rugar,et al.  Nanoscale magnetic resonance imaging , 2009, Proceedings of the National Academy of Sciences.

[35]  N. Chisholm,et al.  Magnetic resonance detection of individual proton spins using quantum reporters. , 2014, Physical review letters.

[36]  Johanna L. Miller Nanoscale nuclear magnetic resonance , 2013 .

[37]  A. Yacoby,et al.  Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. , 2014, Nature nanotechnology.

[38]  Richelle M. Teeling-Smith,et al.  Off-resonant manipulation of spins in diamond via precessing magnetization of a proximal ferromagnet , 2014, 1403.0656.

[39]  P. Appel,et al.  Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. , 2014, Physical review letters.