Multi-resonant silicon nanoantennas by evolutionary multi-objective optimization

Photonic nanostructures have attracted a tremendous amount of attention in the recent past. Via their size, shape and material it is possible to engineer their optical response to user-defined needs. Tailoring of the optical response is usually based on a reference geometry for which subsequent variations to the initial design are applied. Such approach, however, might fail if optimum nanostructures for complex optical responses are searched. As example we can mention the case of complex structures with several simultaneous optical resonances. We propose an approach to tackle the problem in the inverse way: In a first step we define the desired optical response as function of the nanostructure geometry. This response is numerically evaluated using the Green Dyadic Method for fully retarded electro-dynamical simulations. Eventually, we optimize multiple of such objective functions concurrently, using an evolutionary multi-objective optimization algorithm, which is coupled to the electro-dynamical simulations code. A great advantage of this optimization technique is, that it allows the implicit and automatic consideration of technological limitations like the electron beam lithography resolution. Explicitly, we optimize silicon nanostructures such that they provide two user-defined resonance wavelengths, which can be individually addressed by crossed incident polarizations.

[1]  Alexander Y. Piggott,et al.  Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer , 2015, Nature Photonics.

[2]  J. Hugonin,et al.  Design of highly efficient metallo-dielectric patch antennas for single-photon emission. , 2014, Optics express.

[3]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[4]  R. Kirby,et al.  Inverse Design of Metal Nanoparticles’ Morphology , 2016 .

[5]  S. Maier,et al.  Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers , 2015, Scientific Reports.

[6]  C. Girard Near fields in nanostructures , 2005 .

[7]  Harald Giessen,et al.  Imaging and Steering Unidirectional Emission from Nanoantenna Array Metasurfaces , 2016 .

[8]  O. Muskens,et al.  Tailoring second-harmonic generation in single L-shaped plasmonic nanoantennas from the capacitive to conductive coupling regime , 2015 .

[9]  T. Baron,et al.  Enhanced nonlinear optical response from individual silicon nanowires , 2015, 1704.03818.

[10]  Huan Jiang,et al.  Full-color hologram using spatial multiplexing of dielectric metasurface. , 2016, Optics letters.

[11]  P. Ginzburg,et al.  Resonances on-demand for plasmonic nano-particles. , 2011, Nano letters.

[12]  L. Lauhon,et al.  Evolutionary Design and Prototyping of Single Crystalline Titanium Nitride Lattice Optics , 2017 .

[13]  Stefan A. Maier,et al.  Electric and Magnetic Field Enhancement with Ultralow Heat Radiation Dielectric Nanoantennas: Considerations for Surface-Enhanced Spectroscopies , 2014 .

[14]  Romain Quidant,et al.  Heat generation in plasmonic nanostructures: Influence of morphology , 2009 .

[15]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[16]  Luca Dal Negro,et al.  Particle-swarm optimization of broadband nanoplasmonic arrays. , 2010, Optics letters.

[17]  Peter R. Wiecha,et al.  pyGDM - A python toolkit for full-field electro-dynamical simulations and evolutionary optimization of nanostructures , 2018, Comput. Phys. Commun..

[18]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[19]  M. Sinclair,et al.  Realizing optical magnetism from dielectric metamaterials. , 2012, Physical review letters.

[20]  Luca Dal Negro,et al.  Genetically engineered plasmonic nanoarrays. , 2012, Nano letters.

[21]  J. Aizpurua,et al.  Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers , 2013 .

[22]  Jaehoon Jung Robust Design of Plasmonic Waveguide Using Gradient Index and Multiobjective Optimization , 2016, IEEE Photonics Technology Letters.

[23]  D Macías,et al.  Heuristic optimization for the design of plasmonic nanowires with specific resonant and scattering properties. , 2012, Optics express.

[24]  Benjamin Gallinet,et al.  Color Rendering Plasmonic Aluminum Substrates with Angular Symmetry Breaking. , 2015, ACS nano.

[25]  A. Locatelli,et al.  Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. , 2014, Nature nanotechnology.

[26]  P. Adam,et al.  Metal nanostars: Stochastic optimization of resonant scattering properties , 2011 .

[27]  Peter R Wiecha,et al.  Evolutionary Multi-Objective Optimisation of Colour Pixels based on Dielectric Nano-Antennas , 2016, 1609.06709.

[28]  Z. Gao,et al.  Terahertz Plasmonic Cross Resonant Antenna , 2011 .

[29]  Cheng-Wei Qiu,et al.  Plasmonic color palettes for photorealistic printing with aluminum nanostructures. , 2014, Nano letters.

[30]  Mohsen Rahmani,et al.  Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas. , 2013, ACS nano.

[31]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[32]  O. Sigmund,et al.  Topology optimization for nano‐photonics , 2011 .

[33]  M. Siegel,et al.  Coupled T-Shaped Optical Antennas with Two Resonances Localized in a Common Nanogap , 2015 .

[34]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[35]  Jesse Lu,et al.  Nanophotonic computational design. , 2013, Optics express.

[36]  Ole Sigmund,et al.  Inverse design of nanostructured surfaces for color effects , 2014 .

[37]  Pengyu Fan,et al.  Tuning the color of silicon nanostructures. , 2010, Nano letters.

[38]  Bert Hecht,et al.  Plasmonic nanoantenna design and fabrication based on evolutionary optimization. , 2015, Optics express.

[39]  Peter R. Wiecha,et al.  Polarization conversion in plasmonic nanoantennas for metasurfaces using structural asymmetry and mode hybridization , 2017, Scientific Reports.

[40]  Peter R. Wiecha,et al.  Decay rate of magnetic dipoles near nonmagnetic nanostructures , 2017, 1707.07006.

[41]  Girard,et al.  Generalized Field Propagator for Electromagnetic Scattering and Light Confinement. , 1995, Physical review letters.

[42]  Lukas Novotny,et al.  Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. , 2012, Physical review letters.

[43]  E. Dujardin,et al.  Designing thermoplasmonic properties of metallic metasurfaces , 2018, Journal of Optics.

[44]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[45]  Boris Luk'yanchuk,et al.  Magnetic and electric hotspots with silicon nanodimers. , 2015, Nano letters.

[46]  Bert Hecht,et al.  Evolutionary optimization of optical antennas. , 2012, Physical review letters.